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A Brief History of Neural Networks




Perceptron: single-layer

@ Invented by Frank Rosenblatt (1957)
b

Perceptron




Hilbert's 13th Problem

Algebraic equations (under a suitable transformation) of degree up to 6
can be solved by functions of two variables. What about

x'+ a4+ bx®+ex+1=07?
Hilbert's conjecture: x(a, b, ¢) cannot be expressed by a superposition

(sums and compositions) of bivariate functions.

Question: can every continuous (analytic, C*°, etc) function of n

variables be represented as a superposition of continuous (analytic, C*°,
etc) functions of n — 1 variables?

Theorem (D. Hilbert)

There is an analytic function of three variables that cannot be expressed as
a superposition of bivariate ones.
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Kolmogorov's Superposition Theorem

Theorem (A. Kolmogorov, 1956; V. Arnold, 1957)
Given n € Z*, every fy € C([0,1]") can be reprensented as

2n+1 n

fO(X17X2a"' aXn) — Z &q Z¢pq(xp) )
g=1 p=1

where ¢pq € C[0, 1] are increasing functions independent of fy and
gq € C[0, 1] depend on fy.

@ Can choose g to be all the same g4 = g (Lorentz, 1966).

o Can choose ¢pq to be Holder or Lipschitz continuous, but not C!
(Fridman, 1967).

@ Can choose ¢pq = Appg Where A1, --- , A, > 0 and Zp Ap =1
(Sprecher, 1972).

If fis a multivariate continuous function, then f can be written as a superposition of composite
functions of mixtures of continuous functions of single variables:
finite composition of continuous functions of a single variable and the addition.




Kolmogorov's Exact Representation is
Irelavant

» [Girosi-Poggio’1989] Representation
Properties of Networks:
Kolmogorov's Theorem Is Irrelevant,
hitps.//www.mitpressjournals.org/d
oi/pdf/10.1162/neco.1989.1.4.465

» | acking smoothnessin h and g
[Vitushkin'1964] fails to guarantee
the generalization ability (stability)
against noise and perturbations

» The representation is not universal in
F the sense that g and h both
depend on the function F to be
represented.

Figure 1: The network representation of an improved version of Kolmogorov’s
theorem, due to Kahane (1975). The figure shows the case of a bivariate function.
The Kahane’s representation formula is f(z1,...,z,) = Zgi{'l g[Z;l:l lphg(zp)]
where h, are strictly monotonic functions and [, are strictly positive constants
smaller than 1.




A Simplified illustration by David McAllester

A Simpler, Similar Theorem

For (possibly discontinuous) f : [0, 1] — R there exists (pos-
sibly discontinuous) g, h; : R — R.

flz1, ..., zN) =g Zhi(fb‘z’)

Proof: Select h; to spread out the digits of its argument so
that >, h;(x;) contains all the digits of all the x;.




Jniversal Approximate Representation
‘Cybenko'1989, Hornik et al. 1989, Poggio-Girosi’1989, ...]

For continuous f : [0, 1] — R and & > 0 there exists

F(z) = a'c(Wz+ )

= ZO&Z'O‘ (Z Wz’,j X j —1—5@)
2 J

such that for all z in [0, 1]"Y we have |F(z) — f(z)| < €.

Complexity (regularity, smoothness) thereafter becomes the central pursuit in
Approximation Theory.




The Perceptron Algorithm
for classification

l(w) = — Z v (w,x;), My =1i:y; (x5, w) <0,y; € {—1,1}}.

The Perceptron Algorithm is a Stochastic Gradient Descent method
(Robbins-Monro 1951):

wir1 = wy — e Vib(w)

_ W — MYiXi, U yiw?Xz' < 0,
Wy, otherwise.




Finiteness of Stopping Time and Margin

The perceptron converg—gence theorem was proved by Block (1962) and Novikoff (1962).
The following version is based on that in Cristianini and Shawe-Taylor (2000).

Theorem 1 (Block, Novikoff). Let the training set S ={(x1,t1),...,(X,,, t,,)} be contained in
a sphere of radius R about the origin. Assume the dataset to be linearly separable, and let
Wopt » [Woptll = 1, define the hyperplane separating the samples, having functional margin
y > 0. We initialise the normal vector as wg = 0. The number of updates, k, of the perceptron
algorithms is then bounded by
2
e<(2F)
Y

(10)

Input ball: R = max]||x;||.
1

Margin: 7 = miin yi f(z3)

\/




Locality or Sparsity of Computation

Minsky and Papert, 1969 Expanded Edition
Perceptron can’t do XOR classification
Perceptron needs infinite global

information to compute connectivity

Locality or Sparsity is important:
Locality in timee
Locality in space?

Perceptrons

Marvin 1.. Minsky
Seymour A. Papert




Multilayer Perceptrons (MLP) and
Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)
Learning representations by back-propagating
errors, Nature, 323(?): 533-536

BP algorithms as stochastic gradient descent
algorithms (Robbins—-Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

MLP classifies XOR, but the global hurdle on
topology (connectivity) computation still exists:
condition number in Blum-Shub-Smale real
computation models helps.

NATURE VOL. 323 9 OCTOBER 1986

LETTERSTONATURE £2

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

+ Department of Computer Science, Carnegic-Mellon University,
Pitisburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of like units. The adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustnients, internal ‘*hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from eaclier, simpler methods such as
the perceptron-convergence procedure’.

There have been many attempts to design self-organizing
neural networks, The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specificd by giving the
desired state vector of the output units for each state vector of
the input units, If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

+Ta whom correspondence should be addressed

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
iate internal i

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in paraliel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined

The total input, X;, to unit j is a linear function of the outputs,
y, of the AT THAATE conaaeied to 1 and of The Werghtsw,

on these connections

%=Ly [¢V]

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other weights.

A unit has a real-valued GMMM

function of its total input
=

1
1+e

(&)




BP Algorithm: Forward Pass

@ Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]'s

@ Nonlinearities: sigmoid, hyperbolic tangent, (recently)
RelLU.

Algorithm 1 Forward pass

Input: x
Output: =,

g S 1: for{ =110 L do
TEKS 2:  xp= fe(Wiozp—1 + by)
3: end for




BP algorithm = Gradient Descent Method

@ Training examples {z}}™ , and labels {y*}™_,
@ Output of the network {4},
@ Objective square loss, cross-entropy loss, etc.

1 &1 i i
JAWi}, {bi}) = - > iHy — 2% 13 (1)
i—1
@ Gradient descent

0J

W, =W, —n——

l l ”an
0J
b = b — n—
l l n(‘)bl

In practice: use Stochastic Gradient Descent (SGD)




Derivation of BP: Lagrangian Mulfiplier
LeCun et al. 1988

Given n training examples (1;, y;) = (input,target) and L layers
@ Constrained optimization

min i1 |z (L) — vl

subjectto  z;(¢) = fy [ngz- (£—1) },
i=1,...,n, ¢=1,...,L, z;(0) =1,
@ Lagrangian formulation (Unconstrained)

min L(W, x, B)
W,x,B

‘C(vav B) — Zf?:l {|xZ(L) - y’&”% +

> Bi(0)T (%(f) — Je [Weiﬂi (£ —1) D }

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf




Background Info

back-propagation — derivation

o 9L

0B

Forward pass

xi(ﬁ):fgh/wxi(ﬁ—lﬂ f=1... L i=1,....n

A;(€)

A\

Qo g—g,Zg — [Vfg]B(ﬁ)
Backward (adjoint) pass
z2(L) =2V L [Ai(L)} (yi — (L))
() = V| L) Wh z(t+1) £=0,...,L—1

\

o W+ W+ 255

Weight update
Wy = We+ A0 z(0)zf (0 —1) 21 /)50




Convolutional Neural Networks: shift
Invariances and locality

@ Can be traced to Neocognitron of Kunihiko Fukushima
(1979)

@ Yann LeCun combined convolutional neural networks with
back propagation (1989)

@ Imposes shift invariance and locality on the weights

@ Forward pass remains similar

@ Backpropagation slightly changes — need to sum over the
gradients from all spatial positions

/

Biol. Cybernetics 36, 193-202 (1980)

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima
NHK Broadcasting Science nuta, Sctagaya, Tokyo, Japan
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MNIST Dataset Test Error
LeCun et al. 1998

Linear
[deslant] Linear
Pairwise

K-NN Euclidean

[deslant] K-NN Euclidean
40 PCA + quadratic

1000 RBF + linear
[16x16] Tangent Distance
SVM poly 4

RS-SVM poly 5

[dist] V-SVM poly 9

28x28-300-10
[dist] 28x28-300-10
[deslant] 20x20-300-10

Simp|e SVM performs 28x28-1000-10

[dist] 28x28-1000-10

as well as MUIﬁquer 28x28-300-100-10

[dist] 28x28-300-100-10

Convolutional Neural
o [dist] 28x28-500-150-10

Networks which need

careful tuning (LeNets) s

LeNet-4 / Local
LeNet-4 / K-NN
LeNet-5

Dark era for NN: 1998-2012 [dist] LeNet-5

[dist] Boosted LeNet-4




Around the year of 2012: return of NN
as deep learning’

Speech Recognition: TIMIT Computer Vision: ImageNet

TIMIT Speech Recognition Dataset ImageNet

o5 | Large-Scale Visual Recognition
Challenge
30

225
22.5

Error 20 .q
Top-5 Error 15

17.5
7.5

15 0

2004 2006 2008 2010 2012 2014 2010 2011 2012 2013 2014 2015

Deep Learning »} Deep Convolutional Neural Nets




Depth as function of year

28.2

152 layers ‘

\ 16.4

\ 22 layers H 19 layers ]

' 6.7 7.3
= I
ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

[He et al., 2016]

ILSVRC ImageNet Top 5
errors

@ ImageNet (subset):
o 1.2 million training images
e 100,000 test images
e 1000 classes

@ ImageNet large-scale visual recognition Challenge

30%
25%

20%

S 15%

Human Performance Zone

%
NEC-UIUC XRCE AlexNet ZFNet GoogleNet  ResNet SENet
(2010) (2011) (2012) (2013) (2014) (2015) (2017)

Neural Network Architecture

source: https://www.linkedin.com/pulse/must-read-path-breaking-papers-image-classification-muktabh-mayank



Some Cold Water: Tesla Autopilot
Misclassifies Truck as Billboard

" Hgvuyvy ‘ . )

- ca“ll INVESTIGATION FOCUSED ON TESLA AUTOPILOT |obc ALTION

- —
—w- . i1:02 kY

Problem: \Why” How can you trust a
blackbox?




Deep Learning may be fragile in
generalization against noise!

+.007 x
* sign(Ve J(9, . y)) esign(VgJ (0, x,vy))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

[Goodfellow et al., 2014]

@ Small but malicious perturbations can result in severe
misclassification

@ Malicious examples generalize across different
architectures

@ What is source of instability?

@ Can we robustify network?



What's wrong with deep learning?

Ali Rahimi NIPS'17: Machine (deep) Learning has become alchemy.
https://www.youtube.com/watchev=ORHFOnaEzPc

Yann LeCun CVPR'15, invited talk: What's wrong with deep learning?
One important piece: missing some theory (clarity in understanding)!

htto: /techtalks.tv/talks/whats-wrong-with-deep-learning/6 1639/

Being alchemy is certainly not a shame, not wanting to work on
advancing to chemistry is a shame! -- by Eric Xing



What's wrong with deep learning¢

In this course, we only raise problems, and leave you to
explore answers.




CNN learns texture features, not
shapes

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HVLBMhCJQ<2tocitem=46
1:16:47




Lack of Causality or Interpretability

®» |mageNet training learns non-semantic texture features. after random
shuffling of patches, shapes information are destroyed which does not
affect CNN'’s performance much.
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(a) Original Image (b) Patch-Shuffie 2 (c) Patch-Shuffle 4 (d) Patch-Shuffle 8

Zhanxing Zhu et al., ICML 2019




Capture spurious correlations and can't
do causal inference on counterfactuals

https://videoken.com/embed/8UxS4ls6g1getocitem=2

Leon Bottou, ICLR 2019

Example: detection of the action “giving a phone call”

Bbox
Action
labels

3o
o
@ 5
3z
S S
o M
-~ ~+
<

Image

(Oquab et al., CVPR 2014)
~70% correct (SOTA in 2014)

N

Not giving a phone call.

J

N

Giving a phone call ??7??

4




Deep learning is not robust
-- adversarials are ubiguitous

Adversarial Photographer

[BCZOCG'18] Unrestricted Adversarial Example.

"




Overfitting causes privacy leakage

» Model inversion attack leaks privacy

Figure: Recovered (Left), Original (Right)

Fredrikson et al. Proc. CCS, 2016




Towards a deeper understanding of
deep learning

» How to achieve robustnesse

» Madry’'s adversarial tfraining, random smoothing, ensemble methods, stability
regularization, etc.

= How to guarantee privacy?

» Differential privacy, model inversion privacy, membership privacy, etc.

» How fo improve interpretability or causality?

= |nvariance (learning), disentanglement of representation, etc.




Some Theories are limited but help:

» Approximation Theory and Harmonic Analysis : What functions are represented
well by deep neural networks, without suffering the curse of dimensionality and
better than shallow networks?

» Sparse (local), hierarchical (multiscale), compositional functions avoid the curse
dimensionality

» Group (translation, rotational, scaling, deformation) invariances achieved as depth
grows

» Stafistics learning: How can deep learning generalize well without overfitting the
noise?

» “Benign overfitting”e ...

» Optimization: What is the landscape of the empirical risk and how to optimize it
efficiently?

» Wide networks may have simple landscape for GD/SGD algorithms ...



Thank you!




Generalization Ability

Why over-parameterized models may generalize well without
overfittinge




Generalization Error
» Consider the empirical risk minimization under i.i.d. samples

Ral0) = > Uuis £(2::0)) + RO

» The population risk with respect to unknown distribution
R(Q) — Ex,yNPg(ya f(xa 9))

» Fundamental Theorem of Machine Learning (for 0-1 misclassification loss,
called 'errors’ below)

R(0) = Ry, (6) + R(0) — R.(0)
N—— ~ - “
training loss/error generalization loss/error




Why big models generalize welle
W B K A CrARIO et

k=10
What happens when | turn off the regularizers?

Train Test
Model parameters p/n loss  error
CudaConvNet 145,578 2.9 0 23%
CudaConvNet 145,578 2.9 0.34 | 8%
(with regularization)
Microlnception 1,649,402 33 0 | 4%
ResNet 2,401,440 48 0 1 3%

Ben Recht et al. 2016




The Bias-Variance Tradeoff?¢

Error

*

!
Deep

models

>

Models where p>20n are common




Over-parameterized models

Training data size: 50000
0.7 e

0.6 -

0.5

0.4

03 r

Error on CIFAR-10

0.2

0.1 r —©6— Training

—%— Test

O L ool L Lol L L ;" Uy (Ol Oy o DY
NAS R A S NS

102 103 104 10° 106 107

As model complexity grows (p>n), fraining error goes down to zero, but test error does not
increase. Why overparameterized models do not overfit heree -- Tommy Poggio, 2018




Some tentative answers:

» Belkin et al.: Interplolation (overfitting) has a low generalization error in
overparameterization regime

» hitps://simons.berkeley.edu/talks/tbd-65
» [or overparameterized linear regression models:
» Peter Bartlett et al. hitps://simons.berkeley.edu/talks/tlbd-51

= Trevor Hastie et al. asymptotic theory based on random maitrix theory

» [or logistic regressions:

» Telgarsky, Srebro, et al. GD converges to max margin solution
= Nonlinear neural networks: ¢2¢
®» Some warnings on “interpolations’:

®» Ben Recht: hitps://simons.berkeley.edu/talks/tbd-63




Yet, Overfitting indeed hurts...

» | ack of Robustness

{fw ﬂ;% 3}& 7 B&’

7
"’

+.007 x

“black hole” “donut”
87.7% confidence 99.3% confidence

Courtesy of Dr. Hongyang ZHANG.




