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A Brief History of Neural Networks



Perceptron: single-layer

Background Info

Perceptron, the basic block

Invented by Frank Rosenblatt (1957)

z = −→w · −→x + b

x1

x2

xd

···

b

f(z)

w1
w2

wd

15 / 50

“The theory reported here clearly demonstrates the feasibility and fruitfulness of a 
quantitative statistical approach to the organization of cognitive systems. By the study of 
systems such as the perceptron, it is hoped that those fundamental laws of organization 
which are common to all information handling systems, machines and men included, may 
eventually be understood.”  -- Frank Rosenblatt 

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. In, 
Psychological Review, Vol. 65, No. 6, pp. 386-408, November, 1958.

Cybernetics/neural networks

Norbert Wiener Warren McCulloch & Walter Pitts Frank Rosenblatt



Hilbert’s 13th Problem

Question: can every continuous (analytic, C1, etc) function of n
variables be represented as a superposition of continuous (analytic, C1,
etc) functions of n � 1 variables?

Theorem (D. Hilbert)

There is an analytic function of three variables that cannot be expressed as

a superposition of bivariate ones.

Theorem (A. Vitushkin)

8n/↵ > n
0/↵0, ↵0 > 1, ↵,↵0 /2 N, there is an f 2 C

[↵],↵�[↵](Rn) that is
not a superposition of functions in C

[↵0],↵0�[↵0](Rn0).
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Hilbert’s 13th Problem

Algebraic equations (under a suitable transformation) of degree up to 6
can be solved by functions of two variables. What about

x
7 + ax

3 + bx
2 + cx + 1 = 0?

Hilbert’s conjecture: x(a, b, c) cannot be expressed by a superposition
(sums and compositions) of bivariate functions.
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Kolmogorov’s Superposition Theorem

If f is a multivariate continuous function, then f can be written as a superposition of composite
functions of mixtures of continuous functions of single variables:
finite composition of continuous functions of a single variable and the addition.

Theorem (A. Kolmogorov, 1956; V. Arnold, 1957)

Given n 2 Z+
, every f0 2 C ([0, 1]n) can be reprensented as

f0(x1, x2, · · · , xn) =
2n+1X

q=1

gq

0

@
nX

p=1

�pq(xp)

1

A ,

where �pq 2 C [0, 1] are increasing functions independent of f0 and

gq 2 C [0, 1] depend on f0.

Can choose gq to be all the same gq ⌘ g (Lorentz, 1966).

Can choose �pq to be Hölder or Lipschitz continuous, but not C 1

(Fridman, 1967).

Can choose �pq = �p�q where �1, · · · ,�n > 0 and
P

p �p = 1
(Sprecher, 1972).

Xiling Zhang PG Colloquium 06 Oct 2016 4 / 14



Kolmogorov’s Exact Representation is
Irrelavant

´ [Girosi-Poggio’1989] Representation 
Properties of Networks:
Kolmogorov’s Theorem Is Irrelevant,
https://www.mitpressjournals.org/d
oi/pdf/10.1162/neco.1989.1.4.465

´ Lacking smoothness in h and g
[Vitushkin’1964] fails to guarantee
the generalization ability (stability)
against noise and perturbations

´ The representation is not universal in
the sense that g and h both
depend on the function F to be
represented.



A Simplified illustration by David McAllester

A Simpler, Similar Theorem

For (possibly discontinuous) f : [0, 1]N ! R there exists (pos-
sibly discontinuous) g, hi : R ! R.

f (x1, . . . , xN ) = g

0

@
X

i

hi(xi)

1

A

Proof: Select hi to spread out the digits of its argument so
that

P
i hi(xi) contains all the digits of all the xi.
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Universal Approximate Representation
[Cybenko’1989, Hornik et al. 1989, Poggio-Girosi’1989, ...]Cybenko’s Universal Approximation Theorem (1989)

For continuous f : [0, 1]N ! R and " > 0 there exists

F (x) = ↵
>
�(Wx + �)

=
X

i

↵i�

0

@
X

j

Wi,j xj + �i

1

A

such that for all x in [0, 1]N we have |F (x)� f (x)| < ".

11Complexity (regularity, smoothness) thereafter becomes the central pursuit in
Approximation Theory.



The Perceptron Algorithm 
for classification

The Perceptron Algorithm is a Stochastic Gradient Descent method 
(Robbins-Monro 1951):

Project 2 7

http://dx.doi.org/10.1016/j.acha.2015.11.005

In project 1, some explorations can be found here for your reference:

1) Jianhui ZHANG, Hongming ZHANG,Weizhi ZHU, and Min FAN: https://deeplearning-math.
github.io/slides/Project1_ZhangZhangZhuFan.pdf,

2) Wei HU, Yuqi ZHAO, Rougang YE, and Ruijian HAN: https://deeplearning-math.

github.io/slides/Project1_HuZhaoYeHan.pdf.

Moreover, the following report by Shun ZHANG from Fudan University presents a comparison
with Neural Style features:

3) https://www.dropbox.com/s/ccver43xxvo14is/ZHANG.Shun_essay.pdf?dl=0.

Appendix

`(w) = �
X

i2Mw

yi hw,xii , Mw = {i : yi hxi, wi < 0, yi 2 {�1, 1}}.

wt+1 = wt � ⌘tri`(w)

=

⇢
wt � ⌘tyixi, if yiwT

t xi < 0,
wt, otherwise.

ti = yi

Max-Margin:

min kwk2

s.t. yix
T
i w � 1, 8i

f(x) = W2�(W1x)

where �(u) = max(0, u) is ReLU, W1 2 Rd⇥q, and W2 2 Rq⇥1

Margin

� := min
i

yif(xi)

Normalized Margin

�n :=
�

Q2
i=1 kWik
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Finiteness of Stopping Time and Margin

The Perceptron Algorithm

When talking about the functional margin, we are referring to the functional margin of
the entire dataset, defined as the minimum of all functional margins:

� =min
i

tiwTxi . (9)

With these definitions in place, we can now continue to prove the convergence theorem.
The perceptron convergence theoremwas proved by Block (1962) andNoviko↵ (1962).

The following version is based on that in Cristianini and Shawe-Taylor (2000).

Theorem 1 (Block, Noviko↵). Let the training set S = {(x1, t1), . . . , (xn, tn)} be contained in
a sphere of radius R about the origin. Assume the dataset to be linearly separable, and let
wopt , kwoptk = 1, define the hyperplane separating the samples, having functional margin
� > 0. We initialise the normal vector asw0 = 0. The number of updates, k, of the perceptron
algorithms is then bounded by

k 
 
2R
�

!2
. (10)

Proof. Though the proof can be done using the augmented normal vector and samples
defined in the beginning, the notation will be a lot easier if we introduce a di↵erent
augmentation: ŵ = (wT, b/R)T = (w1, . . . ,wD,b/R)T and x̂ = (xT,R)T = (x1, . . . ,xD,R)T.
We first derive an upper bound on how fast the normal vector grows. As the hyper-

plane is unchanged if we multiply ŵ by a constant, we can set ⌘ = 1 without loss of
generality. Let ŵk+1 be the updated (augmented) normal vector after the kth error has
been observed.

kŵk+1k2 = (ŵk + ti x̂i )T(ŵk + ti x̂i ) (11)

= ŵT
k ŵk + x̂Ti x̂i +2tiŵT

k x̂i (12)

= kŵkk2 + kx̂ik2 + 2tiŵT
k x̂i . (13)

Since an update was triggered, we know that tiŵT
k x̂i  0, thus

kŵkk2 + kx̂ik2 + 2tiŵT
k x̂i  kŵkk2 + kx̂ik2 (14)

= kŵkk2 + (kxik2 +R2) (15)

 kŵkk2 + 2R2 . (16)

This implies that kŵkk2  2kR2, thus

kŵk+1k2  2(k +1)R2 . (17)

We then proceed to show how the inner product between an update of the normal
vector and ŵopt increase with each update:

ŵT
optŵk+1 = ŵT

optŵk + tiŵT
optx̂i (18)

� ŵT
optŵk +� (19)

� (k +1)� , (20)

since ŵT
optŵk � k� . We therefore have

k2�2  (ŵT
optŵk)2  kŵoptk2kŵkk2  2kR2kŵoptk2 , (21)

where we have made use of the Cauchy-Schwarz inequality. As k2�2 grows faster than
2kR2, Eq. (21) can hold if and only if

k  2kŵoptk2
R2

�2 . (22)
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where we have made use of the Cauchy-Schwarz inequality. As k2�2 grows faster than
2kR2, Eq. (21) can hold if and only if

k  2kŵoptk2
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The Perceptron Algorithm

Figure 1 A dataset consisting of two classes separated by a hyperplane wTx + b = 0. The func-
tional margin � is the shortest distance from the hyperplane to any of the samples. The
distance from the hyperplane to the origin is b.

steps such that it, on average, moves closer to the minimum of Eq. (3). More formally,
we obtain the normal vector of iteration k +1 as follows:

wk+1 =wk +�w. (4)

The minimisation scheme we will use is known as stochastic gradient descent (SGD)
and updates the normal vector each time it encounters a misclassified point. In SGD
�w = �⌘rE(w), where ⌘ is the so-called learning rate parameter. Thus,

wk+1 =wk � ⌘rE(w) (5)
=wk + ⌘tixi . (6)

To update the normal vector, all we have to do is to add (or subtract) one of the mis-
classified samples.
This concludes the perceptron learning algorithm. To find a hyperplane separating

the classes of the training set, we continuously apply Eq. (6) until no misclassified
points are left. Note, however, that each time we update the normal vector, some of the
previously correctly classified samples may become misclassified, so the perceptron
learning algorithm (Eq. (6)) is not guaranteed to reduce the overall error with each
update. The perceptron convergence theorem, however, states that if it is possible to
separate the two classes of the dataset with a hyperplane, then the perceptron learning
algorithm is guaranteed to find it in a finite number of iterations.

The perceptron convergence theorem

To prove the perceptron convergence theorem, we need to introduce some definitions.
Fig. 1 illustrates the situation of a hyperplane separating a dataset consisting of two
classes. The first definition we will need is the concept of a containing sphere centred
at the origin. This sphere will have a radius R, such that

R =max
i
kxik . (7)

The second definition we will need is that of the functional margin. This is simply the
distance from the hyperplane to a sample xi ,

�i = tiwTxi . (8)
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Locality or Sparsity of Computation

Why are compositional 
functions important?

Which one of these reasons: 
Physics? 

Neuroscience? <=== 
Evolution?

What is special about 
locality of computation?


Locality in “space”? 

Locality in “time”?

Locality of Computation

Locality or Sparsity is important:
Locality in time?
Locality in space? 

Minsky and Papert, 1969
Perceptron can’t do XOR classification
Perceptron needs infinite global 

information to compute connectivity

Among the most challenging scientific questions of our time are the 
corresponding analytic and synthetic problems:  How does the brain function? 
 Can we design a machine which will simulate a brain?
-- Automata Studies, 1956

Alan Turing John von Neumann Marvin Minsky John McCarthy

Artificial Intelligence



Multilayer Perceptrons (MLP) and 
Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)
Learning representations by back-propagating 

errors, Nature, 323(9): 533-536

BP algorithms as stochastic gradient descent 
algorithms (Robbins–Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

MLP classifies XOR, but the global hurdle on 
topology (connectivity) computation still exists: 
condition number in Blum-Shub-Smale real 
computation models helps. 

Background Info

Multi-layer perceptron
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BP Algorithm: Forward Pass
Background Info

Forward pass

Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]’s
Nonlinearities: sigmoid, hyperbolic tangent, (recently)
ReLU.

Algorithm 1 Forward pass
Input: x0
Output: xL

1: for ℓ = 1 to L do
2: xℓ = fℓ(Wℓxℓ−1 + bℓ)
3: end for

18 / 50

Background Info

Multi-layer perceptron
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BP algorithm = Gradient Descent Method
Background Info

Training neural networks

Training examples {xi
0}n

i=1 and labels {yi}n
i=1

Output of the network {xi
L}m

i=1
Objective

J({Wl}, {bl}) = 1
n

n∑

i=1

1
2∥y

i − xi
L∥22 (1)

Gradient descent

Wl = Wl − η
∂J

∂Wl

bl = bl − η
∂J

∂bl

: In practice: use Stochastic Gradient Descent (SGD)

19 / 50

Square loss, cross-entropy loss, etc.



Derivation of BP: Lagrangian Multiplier
LeCun et al. 1988

Background Info

back-propagation – derivation
derivation from LeCun et al. 1988

Given n training examples (Ii, yi) ≡ (input,target) and L layers
Constrained optimization

min
W,x

∑n
i=1 ∥xi(L)− yi∥2

subject to xi(ℓ) = fℓ

[
Wℓxi (ℓ− 1)

]
,

i = 1, . . . , n, ℓ = 1, . . . , L, xi(0) = Ii

Lagrangian formulation (Unconstrained)

min
W,x,B

L(W, x, B)

L(W, x, B) = ∑n
i=1

{

∥xi(L)− yi∥22 +

∑L
ℓ=1 Bi(ℓ)T

(
xi(ℓ)− fℓ

[
Wℓxi (ℓ− 1)

])}

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf 20 / 50http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf



Background Info

back-propagation – derivation
∂L
∂B

Forward pass

xi(ℓ) = fℓ

[
Wℓxi (ℓ− 1)
︸ ︷︷ ︸

Ai(ℓ)

]
ℓ = 1, . . . , L, i = 1, . . . , n

∂L
∂x , zℓ = [∇fℓ]B(ℓ)

Backward (adjoint) pass

z(L) = 2∇fL

[
Ai(L)

]
(yi − xi(L))

zi(ℓ) = ∇fℓ

[
Ai(ℓ)

]
W T

ℓ+1zi(ℓ + 1) ℓ = 0, . . . , L− 1

W ←W + λ ∂L
∂W

Weight update

Wℓ ←Wℓ + λ
∑n

i=1 zi(ℓ)xT
i (ℓ− 1) 21 / 50



Convolutional Neural Networks: shift 
invariances and locality

Background Info

Convolutional Neural Network (CNN)

Can be traced to Neocognitron of Kunihiko Fukushima
(1979)
Yann LeCun combined convolutional neural networks with
back propagation (1989)
Imposes shift invariance and locality on the weights
Forward pass remains similar
Backpropagation slightly changes – need to sum over the
gradients from all spatial positions

Source: [LeCun et al., 1998]
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Biol. Cybernetics 36, 193 202 (1980) Biological 
Cybernetics 
 9 by Springer-Verlag 1980 

Neocognitron: A Self-organizing Neural Network Model 
for a Mechanism of Pattern Recognition 
Unaffected by Shift in Position 

Kunihiko Fukushima 
NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan 

Abstract. A neural network model for a mechanism of 
visual pattern recognition is proposed in this paper. 
The network is self-organized by "learning without a 
teacher", and acquires an ability to recognize stimulus 
patterns based on the geometrical similarity (Gestalt) 
of their shapes without affected by their positions. This 
network is given a nickname "neocognitron". After 
completion of self-organization, the network has a 
structure similar to the hierarchy model of the visual 
nervous system proposed by Hubel and Wiesel. The 
network consists of an input layer (photoreceptor 
array) followed by a cascade connection of a number of 
modular structures, each of which is composed of two 
layers of cells connected in a cascade. The first layer of 
each module consists of "S-cells', which show charac- 
teristics similar to simple cells or lower order hyper- 
complex cells, and the second layer consists of 
"C-cells" similar to complex cells or higher order 
hypercomplex cells. The afferent synapses to each 
S-cell have plasticity and are modifiable. The network 
has an ability of unsupervised learning: We do not 
need any "teacher" during the process of self- 
organization, and it is only needed to present a set of 
stimulus patterns repeatedly to the input layer of the 
network. The network has been simulated on a digital 
computer. After repetitive presentation of a set of 
stimulus patterns, each stimulus pattern has become to 
elicit an output only from one of the C-cells of the last 
layer, and conversely, this C-cell has become selectively 
responsive only to that stimulus pattern. That is, none 
of the C-cells of the last layer responds to more than 
one stimulus pattern. The response of the C-cells of the 
last layer is not affected by the pattern's position at all. 
Neither is it affected by a small change in shape nor in 
size of the stimulus pattern. 

1. Introduction 

The mechanism of pattern recognition in the brain is 
little known, and it seems to be almost impossible to 

reveal it only by conventional physiological experi- 
ments. So, we take a slightly different approach to this 
problem. If we could make a neural network model 
which has the same capability for pattern recognition 
as a human being, it would give us a powerful clue to 
the understanding of the neural mechanism in the 
brain. In this paper, we discuss how to synthesize a 
neural network model in order to endow it an ability of 
pattern recognition like a human being. 

Several models were proposed with this intention 
(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971; 
Fukushima, 1975). The response of most of these 
models, however, was severely affected by the shift in 
position and/or by the distortion in shape of the input 
patterns. Hence, their ability for pattern recognition 
was not so high. 

In this paper, we propose an improved neural 
network model. The structure of this network has been 
suggested by that of the visual nervous system of the 
vertebrate. This network is self-organized by "learning 
without a teacher", and acquires an ability to recognize 
stimulus patterns based on the geometrical similarity 
(Gestalt) of their shapes without affected by their 
position nor by small distortion of their shapes. 

This network is given a nickname "neocognitron"l, 
because it is a further extention of the "cognitron", 
which also is a self-organizing multilayered neural 
network model proposed by the author before 
(Fukushima, 1975). Incidentally, the conventional 
cognitron also had an ability to recognize patterns, but 
its response was dependent upon the position of the 
stimulus patterns. That is, the same patterns which 
were presented at different positions were taken as 
different patterns by the conventional cognitron. In the 
neocognitron proposed here, however, the response of 
the network is little affected by the position of the 
stimulus patterns. 

1 Preliminary report of the neocognitron already appeared else- 
where (Fukushima, 1979a, b) 
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Neocognitron: A Self-organizing Neural Network Model 
for a Mechanism of Pattern Recognition 
Unaffected by Shift in Position 

Kunihiko Fukushima 
NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan 

Abstract. A neural network model for a mechanism of 
visual pattern recognition is proposed in this paper. 
The network is self-organized by "learning without a 
teacher", and acquires an ability to recognize stimulus 
patterns based on the geometrical similarity (Gestalt) 
of their shapes without affected by their positions. This 
network is given a nickname "neocognitron". After 
completion of self-organization, the network has a 
structure similar to the hierarchy model of the visual 
nervous system proposed by Hubel and Wiesel. The 
network consists of an input layer (photoreceptor 
array) followed by a cascade connection of a number of 
modular structures, each of which is composed of two 
layers of cells connected in a cascade. The first layer of 
each module consists of "S-cells', which show charac- 
teristics similar to simple cells or lower order hyper- 
complex cells, and the second layer consists of 
"C-cells" similar to complex cells or higher order 
hypercomplex cells. The afferent synapses to each 
S-cell have plasticity and are modifiable. The network 
has an ability of unsupervised learning: We do not 
need any "teacher" during the process of self- 
organization, and it is only needed to present a set of 
stimulus patterns repeatedly to the input layer of the 
network. The network has been simulated on a digital 
computer. After repetitive presentation of a set of 
stimulus patterns, each stimulus pattern has become to 
elicit an output only from one of the C-cells of the last 
layer, and conversely, this C-cell has become selectively 
responsive only to that stimulus pattern. That is, none 
of the C-cells of the last layer responds to more than 
one stimulus pattern. The response of the C-cells of the 
last layer is not affected by the pattern's position at all. 
Neither is it affected by a small change in shape nor in 
size of the stimulus pattern. 

1. Introduction 

The mechanism of pattern recognition in the brain is 
little known, and it seems to be almost impossible to 

reveal it only by conventional physiological experi- 
ments. So, we take a slightly different approach to this 
problem. If we could make a neural network model 
which has the same capability for pattern recognition 
as a human being, it would give us a powerful clue to 
the understanding of the neural mechanism in the 
brain. In this paper, we discuss how to synthesize a 
neural network model in order to endow it an ability of 
pattern recognition like a human being. 

Several models were proposed with this intention 
(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971; 
Fukushima, 1975). The response of most of these 
models, however, was severely affected by the shift in 
position and/or by the distortion in shape of the input 
patterns. Hence, their ability for pattern recognition 
was not so high. 

In this paper, we propose an improved neural 
network model. The structure of this network has been 
suggested by that of the visual nervous system of the 
vertebrate. This network is self-organized by "learning 
without a teacher", and acquires an ability to recognize 
stimulus patterns based on the geometrical similarity 
(Gestalt) of their shapes without affected by their 
position nor by small distortion of their shapes. 

This network is given a nickname "neocognitron"l, 
because it is a further extention of the "cognitron", 
which also is a self-organizing multilayered neural 
network model proposed by the author before 
(Fukushima, 1975). Incidentally, the conventional 
cognitron also had an ability to recognize patterns, but 
its response was dependent upon the position of the 
stimulus patterns. That is, the same patterns which 
were presented at different positions were taken as 
different patterns by the conventional cognitron. In the 
neocognitron proposed here, however, the response of 
the network is little affected by the position of the 
stimulus patterns. 

1 Preliminary report of the neocognitron already appeared else- 
where (Fukushima, 1979a, b) 
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron 

shifted in parallel from cell to cell. Hence, all the cells in 
a single cell-plane have receptive fields of the same 
function, but at different positions. 

We will use notations Us~(k~,n ) to represent the 
output of an S-cell in the kr th  S-plane in the l-th 
module, and Ucl(k~, n) to represent the output of a C-cell 
in the kr th  C-plane in that module, where n is the two- 
dimensional co-ordinates representing the position of 
these cell's receptive fields in the input layer. 

Figure 2 is a schematic diagram illustrating the 
interconnections between layers. Each tetragon drawn 
with heavy lines represents an S-plane or a C-plane, 
and each vertical tetragon drawn with thin lines, in 
which S-planes or C-planes are enclosed, represents an 
S-layer or a C-layer. 

In Fig. 2, a cell of each layer receives afferent 
connections from the cells within the area enclosed by 
the elipse in its preceding layer. To be exact, as for the 
S-cells, the elipses in Fig. 2 does not show the connect- 
ing area but the connectable area to the S-cells. That is, 
all the interconnections coming from the elipses are 
not always formed, because the synaptic connections 
incoming to the S-cells have plasticity. 

In Fig. 2, for the sake of simplicity of the figure, 
only one cell is shown in each cell-plane. In fact, all the 
cells in a cell-plane have input synapses of the same 
spatial distribution as shown in Fig. 3, and only the 
positions of the presynaptic cells are shifted in parallel 
from cell to cell. 

R3 ~I 

modifioble synapses 

) unmodifiable synopses 

Since the cells in the network are interconnected in 
a cascade as shown in Fig. 2, the deeper the layer is, the 
larger becomes the receptive field of each cell of that 
layer. The density of the cells in each cell-plane is so 
determined as to decrease in accordance with the 
increase of the size of the receptive fields. Hence, the 
total number of the cells in each cell-plane decreases 
with the depth of the cell-plane in the network. In the 
last module, the receptive field of each C-cell becomes 
so large as to cover the whole area of input layer U0, 
and each C-plane is so determined as to have only one 
C-cell. 

The S-cells and C-cells are excitatory cells. That is, 
all the efferent synapses from these cells are excitatory. 
Although it is not shown in Fig. 2, we also have 

Fig. 3. Illustration showing the input interconnections to the cells 
within a single cell-plane 

Fig. 2. Schematic diagram illustrating the 
interconnections between layers in the 
neocognitron 



MNIST Dataset Test Error 
LeCun et al. 1998
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Simple SVM performs 
as well as Multilayer 
Convolutional Neural 
Networks which need 
careful tuning (LeNets)

Dark era for NN: 1998-2012



Around the year of 2012: return of NN 
as `deep learning’
Speech Recognition: TIMITDeep Learning revolution: success and challenges

Deep Learning for Speech Recognition

Performance improvements in spoken word error rate over the years on the
TIMIT acoustic-phonetic continuous speech corpus dataset.

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 9 / 85

Computer Vision: ImageNetDeep Learning revolution: success and challenges

Deep Learning for Computer Vision

Performance improvements in top-5 error over the years on the ImageNet
Large-scale Visual Recognition Challenge.

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 13 / 85



Depth as function of year
Background Info

Depth as function of year

[He et al., 2016]

39 / 50

Background Info

Instance of Common Task Framework, 1

ImageNet (subset):
1.2 million training images
100,000 test images
1000 classes

ImageNet large-scale visual recognition Challenge

source: https://www.linkedin.com/pulse/must-read-path-breaking-papers-image-classification-muktabh-mayank

13 / 50

ILSVRC ImageNet Top 5 
errors



Some Cold Water: Tesla Autopilot  
Misclassifies Truck as Billboard

Problem: Why? How can you trust a 
blackbox?



Deep Learning may be fragile in 
generalization against noise!

Background Info

Adversarial examples

[Goodfellow et al., 2014]

Small but malicious perturbations can result in severe
misclassification
Malicious examples generalize across different
architectures
What is source of instability?
Can we robustify network?

43 / 50



What’s wrong with deep learning?
Ali Rahimi NIPS’17: Machine (deep) Learning has become alchemy. 
https://www.youtube.com/watch?v=ORHFOnaEzPc

Yann LeCun CVPR’15, invited talk: What’s wrong with deep learning? 
One important piece: missing some theory (clarity in understanding)!
http://techtalks.tv/talks/whats-wrong-with-deep-learning/61639/

Being alchemy is certainly not a shame, not wanting to work on 
advancing to chemistry is a shame! -- by Eric Xing



What’s wrong with deep learning?
In this course, we only raise problems, and leave you to
explore answers.



CNN learns texture features, not 
shapes

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HvLBMhCJQ?tocitem=46

Published as a conference paper at ICLR 2019

IMAGENET-TRAINED CNNS ARE BIASED TOWARDS
TEXTURE; INCREASING SHAPE BIAS IMPROVES
ACCURACY AND ROBUSTNESS

Robert Geirhos

University of Tübingen & IMPRS-IS
robert.geirhos@bethgelab.org

Patricia Rubisch

University of Tübingen & U. of Edinburgh
p.rubisch@sms.ed.ac.uk

Claudio Michaelis

University of Tübingen & IMPRS-IS
claudio.michaelis@bethgelab.org

Matthias Bethge
⇤

University of Tübingen
matthias.bethge@bethgelab.org

Felix A. Wichmann
⇤

University of Tübingen
felix.wichmann@uni-tuebingen.de

Wieland Brendel
⇤

University of Tübingen
wieland.brendel@bethgelab.org

ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

⇤Joint senior authors
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Lack of Causality or Interpretability
´ ImageNet training learns non-semantic texture features: after random 

shuffling of patches, shapes information are destroyed which does not
affect CNN’s performance much.Interpreting Adversarially Trained Convolutional Neural Networks
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(a) Original Image (b) Patch-Shuffle 2 (c) Patch-Shuffle 4 (d) Patch-Shuffle 8
Figure 6. Visualization of patch-shuffling transformation. The first row shows probability of “cake” assigned by different models.
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(a) Caltech-256 (b) Tiny ImageNet
Figure 7. “Accuracy on correctly classified images” for different models on patch-shuffled Tiny ImageNet and Caltech-256 with different
splitting numbers. Detailed results are listed in the appendix.

When decreasing the saturation level, all models have simi-
lar degree of performance degradation, indicating that AT-
CNNs are not robust to all kinds of image distortions. They
tend to be more robust for fixed types of distortions. We
leave the further investigation regarding this issue as future
work.

4.2.3. PATCH-SHUFFLING

Stylizing and saturation operation aim at changing or re-
moving the texture information of original images, while
preserving the features of shapes and edges. In order to test
the different bias of AT-CNN and standard CNN in the other
way around, we shatter the shape and edge information by
splitting the images into k ⇥ k patches and then randomly
shuffling them. This operation could still maintains the local
textures if k is not too large.

Figure 6 shows one example of patch-shuffled images under
different numbers of splitting. The first row shows the proba-
bilities assigned by different models to the ground truth class

of the original image. Obviously, after random shuffling,
the shapes and edge features are destroyed dramatically,
the prediction probability of the adverarially trained CNNs
drops significantly, while the normal CNNs still maintains
a high confidence over the ground truth class. This reveals
AT-CNNs are more baised towards shapes and edges than
normally trained ones.

Moreover, Figure 7 depicts the “ accuracy of correctly classi-
fied images” for all the models measured on “Patch-shuffled”
test set with increasing number of splitting pieces. AT-
CNNs, especially trained against with a stronger attack are
more sensitive to “Patch-shuffling” operations in most of
our experiments.

Note that under “Patch-shuffle 8” operation, all models have
similar “ accuracy of correctly classified images”, which is
largely due to the severe information loss. Also note that this
accuracy of all models on Tiny ImageNet shown in 7(a) is
mush lower than that on Caltech-256 in 7(b). That is, under
“Patch-shuffle 1”, normally trained CNN has an accuracy

Zhanxing Zhu et al., ICML 2019



Capture spurious correlations and can’t 
do causal inference on counterfactuals

The statistical problem is only a proxy
Example: detection of the action “giving a phone call”

(Oquab et al., CVPR 2014)
~70% correct (SOTA in 2014)

Convnet
m

achinery

Bbox

Image

Action 
labels

The statistical problem is only a proxy
Example: detection of the action “giving a phone call”

Not giving a phone call.

Giving a phone call ????

Leon Bottou, ICLR 2019
https://videoken.com/embed/8UxS4ls6g1g?tocitem=2



Deep learning is not robust
-- adversarials are ubiquitous 

Deep networks are unsafe

3

[BCZOCG’18] Unrestricted Adversarial Example, 2018
[BCZOCG’18] Unrestricted Adversarial Example.



Overfitting causes privacy leakage

´ Model inversion attack leaks privacy
Break Privacy of the Face Recognition System

Figure: Recovered (Left), Original (Right)

We can recover the private training data by model-inversion attack.

Fredrikson et al., Proc. CCS, 2016

6 / 53

Fredrikson et al. Proc. CCS, 2016



Towards a deeper understanding of
deep learning
´ How to achieve robustness?

´ Madry’s adversarial training, random smoothing, ensemble methods, stability
regularization, etc.

´ How to guarantee privacy?
´ Differential privacy, model inversion privacy, membership privacy, etc.

´ How to improve interpretability or causality?
´ Invariance (learning), disentanglement of representation, etc.



Some Theories are limited but help:
´ Approximation Theory and Harmonic Analysis : What functions are represented 

well by deep neural networks, without suffering the curse of dimensionality and 
better than shallow networks? 
´ Sparse (local), hierarchical (multiscale), compositional functions avoid the curse 

dimensionality

´ Group (translation, rotational, scaling, deformation) invariances achieved as depth 
grows 

´ Statistics learning: How can deep learning generalize well without overfitting the 
noise? 
´ “Benign overfitting”? …

´ Optimization: What is the landscape of the empirical risk and how to optimize it 
efficiently?
´ Wide networks may have simple landscape for GD/SGD algorithms …



Thank you!



Generalization Ability
Why over-parameterized models may generalize well without 
overfitting?



Generalization Error

´ Consider the empirical risk minimization under i.i.d. samples

´ The population risk with respect to unknown distribution

´ Fundamental Theorem of Machine Learning (for 0-1 misclassification loss, 
called ’errors’ below)
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Why big models generalize well?
n=50,000
d=3,072
k=10

CIFAR10

Model parameters p/n
Train 
loss

Test 
error

CudaConvNet 145,578 2.9 0 23%

CudaConvNet
(with regularization)

145,578 2.9 0.34 18%

MicroInception 1,649,402 33 0 14%

ResNet 2,401,440 48 0 13%

What happens when I turn off the regularizers?

Ben Recht et al. 2016



The Bias-Variance Tradeoff?

Deep  
models

Models where p>20n are common



Over-parameterized modelsA puzzle: why non overfitting with deep nets without regularization?

As model complexity grows (p>n), training error goes down to zero, but test error does not 
increase. Why overparameterized models do not overfit here?  -- Tommy Poggio, 2018



Some tentative answers:

´ Belkin et al.: Interplolation (overfitting) has a low generalization error in 
overparameterization regime
´ https://simons.berkeley.edu/talks/tbd-65

´ For overparameterized linear regression models:
´ Peter Bartlett et al. https://simons.berkeley.edu/talks/tbd-51

´ Trevor Hastie et al. asymptotic theory based on random matrix theory

´ For logistic regressions: 
´ Telgarsky, Srebro, et al. GD converges to max margin solution

´ Nonlinear neural networks: ??? 
´ Some warnings on “interpolations”: 

´ Ben Recht: https://simons.berkeley.edu/talks/tbd-63



Yet, Overfitting indeed hurts…

´ Lack of Robustness
Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

Deep networks are unsafe

2

“black hole”
87.7% confidence

“donut”
99.3% confidence

Courtesy of Dr. Hongyang ZHANG.


