

Symmetry and Network Architectures

Yuan YAO

HKUST

Based on Mallat, Bolcskei, Cheng talks etc.

Acknowledgement

A following-up course at HKUST: https://deeplearning-math.github.io/

High Dimensional Natural Image Classification

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- Classification: estimate a class label f(x)given n sample values $\{x_i, y_i = f(x_i)\}_{i \le n}$

Curse of Dimensionality

- Analysis in high dimension: $x \in \mathbb{R}^d$ with $d \ge 10^6$.
- Points are far away in high dimensions d:
 - 10 points cover [0, 1] at a distance 10^{-1}
 - 100 points for $[0, 1]^2$
 - need 10^d points over $[0, 1]^d$ impossible if $d \ge 20$

$$\lim_{r \to \infty} \frac{\text{volume sphere of radius } r}{\text{volume } [0, r]^d} =$$

points are concentrated in 2^d corners!

 \Rightarrow Euclidean metrics are not appropriate on **raw data**.

0

A Blessing from Physical world? Multiscale "compositional" sparsity

- Variables x(u) indexed by a low-dimensional u: time/space... pixels in images, particles in physics, words in text...
 - \bullet Mutliscale interactions of d variables:

From d^2 interactions to $O(\log^2 d)$ multiscale interactions.

• Multiscale analysis: wavelets on groups of symmetries. hierarchical architecture. Learning as an Approximation

• To estimate f(x) from a sampling $\{x_i, y_i = f(x_i)\}_{i \le M}$

we must build an *M*-parameter approximation f_M of f.

• Precise sparse approximation requires some "regularity".

• For binary classification
$$f(x) = \begin{cases} 1 & \text{if } x \in \Omega \\ -1 & \text{if } x \notin \Omega \end{cases}$$

 $f(x) = \text{sign}(\tilde{f}(x))$
where \tilde{f} is potentially regular.

• What type of regularity ? How to compute f_M ?

No big deal: curse of dimensionality still there.

Fourier series: $\rho(u) = e^{iu}$ $f_M(x) = \sum_{n=1}^M \alpha_n e^{iw_n \cdot x}$

For nearly all ρ : essentially same approximation results.

Need $M = \epsilon^{-1}$ points to cover [0, 1] at a distance ϵ

 $\Rightarrow \|f - f_M\| \le C M^{-1}$

Linear Ridge Approximation

• Piecewise linear ridge approximation: $x \in [0, 1]^d$

If f is Lipschitz: $|f(x) - f(x')| \le C ||x - x'||$ Sampling at a distance ϵ :

$$\Rightarrow |f(x) - \tilde{f}(x)| \le C \epsilon.$$

need $M = \epsilon^{-d}$ points to cover $[0, 1]^d$ at a distance ϵ

$$\Rightarrow ||f - f_M|| \le C M^{-1/d}$$

Curse of dimensionality!

Approximation with Regularity

- What prior condition makes learning possible ?
- Approximation of regular functions in $\mathbf{C}^{s}[0,1]^{d}$:

 $\forall x, u \quad |f(x) - p_u(x)| \le C |x - u|^s \text{ with } p_u(x) \text{ polynomial}$

Failure of classical approximation theory.

Kernel Learning Change of variable $\Phi(x) = \{\phi_k(x)\}_{k < d'}$ to nearly linearize f(x), which is approximated by: $\tilde{f}(x) = \langle \Phi(x), w \rangle = \sum w_k \phi_k(x) .$ 1D projection k $\Phi(x) \in \mathbb{R}^{d'}$ Data: $x \in \mathbb{R}^d$ Linear Classifier Φ Metric: ||x - x'|| $\|\Phi(x) - \Phi(x')\|$

- How and when is possible to find such a Φ ?
- What "regularity" of f is needed ?

Increase Dimensionality

Proposition: There exists a hyperplane separating any two subsets of N points $\{\Phi x_i\}_i$ in dimension d' > N + 1if $\{\Phi x_i\}_i$ are not in an affine subspace of dimension < N.

 \Rightarrow Choose Φ increasing dimensionality !

Problem: generalisation, overfitting.

Example: Gaussian kernel $\langle \Phi(x), \Phi(x') \rangle = \exp\left(\frac{-\|x - x'\|^2}{2\sigma^2}\right)$

 $\Phi(x)$ is of dimension $d' = \infty$

If σ is small, nearest neighbor classifier type:

Spirit in Fisher's Linear Discriminant Analysis

- Reduction of Dimensionality
- Discriminative change of variable $\Phi(x)$: $\Phi(x) \neq \Phi(x')$ if $f(x) \neq f(x')$ $\Rightarrow \exists \tilde{f} \text{ with } f(x) = \tilde{f}(\Phi(x))$
- If \tilde{f} is Lipschitz: $|\tilde{f}(z) \tilde{f}(z')| \le C ||z z'||$ $z = \Phi(x) \iff |f(x) - f(x')| \le C ||\Phi(x) - \Phi(x')||$ Discriminative: $||\Phi(x) - \Phi(x')|| \ge C^{-1} |f(x) - f(x')|$
 - For $x \in \Omega$, if $\Phi(\Omega)$ is bounded and a low dimension d' $\Rightarrow ||f - f_M|| \le C M^{-1/d'}$

Exceptional results for *images*, *speech*, *language*, *bio-data*...

Why does it work so well? A difficult problem

• L_j is a linear combination of convolutions and subsampling:

$$x_{j}(u,k_{j}) = \rho \left(\sum_{k} x_{j-1}(\cdot,k) \star h_{k_{j},k}(u) \right)$$

sum across channels

• ρ is contractive: $|\rho(u) - \rho(u')| \le |u - u'|$ $\rho(u) = \max(u, 0) \text{ or } \rho(u) = |u|$

- Why convolutions ? Translation covariance.
- Why no overfitting ? Contractions, dimension reduction
- Why hierarchical cascade ?
- Why introducing non-linearities ?
- How and what to linearise ?
- What are the roles of the multiple channels in each layer ?

If level sets (classes) are parallel to a linear space then variables are eliminated by linear projections: *invariants*.

Ens Linearise for Dimensionality Reduction

- If level sets Ω_t are not parallel to a linear space
 - Linearise them with a change of variable $\Phi(x)$
 - Then reduce dimension with linear projections
- Difficult because Ω_t are high-dimensional, irregular, known on few samples.

Level Set Geometry: Symmetries

• Curse of dimensionality \Rightarrow not local but global geometry Level sets: classes, characterised by their global symmetries.

• A symmetry is an operator g which preserves level sets:

 $\forall x , f(g.x) = f(x) : \text{global}$

If g_1 and g_2 are symmetries then $g_1.g_2$ is also a symmetry $f(g_1.g_2.x) = f(g_2.x) = f(x)$

- If commutative g.g' = g'.g : Abelian group.
- \bullet Group of dimension n if it has n generators: $g=g_1^{p_1}\,g_2^{p_2}\dots g_n^{p_n}$
- Lie group: infinitely small generators (Lie Algebra)

- Globally invariant to the translation group: small
- Locally invariant to small diffeomorphisms: huge group

Video of Philipp Scott Johnson

https://www.youtube.com/watch?v=nUDIoN-_Hxs

• Rotation and deformations

Group: $SO(2) \times \text{Diff}(SO(2))$

• Scaling and deformations

Group: $\mathbb{R} \times \text{Diff}(\mathbb{R})$

• Linearise symmetries with a change of variable $\Phi(x)$

• Lipschitz: $\forall x, g$: $\|\Phi(x) - \Phi(g,x)\| \le C \|g\|$

Translation and Deformations

x(u)

- Globally invariant to the translation group
- Locally invariant to small diffeomorphisms

Linearize small diffeomorphisms: \Rightarrow Lipschitz regular

 $Video\ of\ Philipp\ Scott\ Johnson$

https://www.youtube.com/watch?v=nUDIoN-_Hxs

Translations and Deformations

• Invariance to translations:

$$g.x(u) = x(u-c) \Rightarrow \Phi(g.x) = \Phi(x)$$
.

• Small diffeomorphisms: $g.x(u) = x(u - \tau(u))$

Metric: $||g|| = ||\nabla \tau||_{\infty}$ maximum scaling Linearisation by Lipschitz continuity

 $\|\Phi(x) - \Phi(g.x)\| \le C \|\nabla \tau\|_{\infty}.$

• Discriminative change of variable:

 $\|\Phi(x) - \Phi(x')\| \ge C^{-1} |f(x) - f(x')|$

Fourier Deformation Instability

• Fourier transform $\hat{x}(\omega) = \int x(t) e^{-i\omega t} dt$

$$x_c(t) = x(t-c) \implies \hat{x}_c(\omega) = e^{-ic\omega} \hat{x}(\omega)$$

The modulus is invariant to translations:

 $\Phi(x) = |\hat{x}| = |\hat{x}_c|$

Image Wavelet Transform

• Complex wavelet: $\psi(t) = \psi^a(t) + i \psi^b(t)$, $t = (t_1, t_2)$ rotated and dilated: $\psi_\lambda(t) = 2^{-j} \psi(2^{-j}rt)$ with $\lambda = (2^j, r)$

• Wavelets are uniformly stable to deformations: if $\psi_{\lambda,\tau}(t) = \psi_{\lambda}(t - \tau(t))$ then

$$\|\psi_{\lambda} - \psi_{\lambda,\tau}\| \leq C \sup_{t} |\nabla \tau(t)|.$$

- Wavelets separate multiscale information.
- Wavelets provide sparse representations.

Why Wavelets?

• Wavelets are uniformly stable to deformations: • Wavelets (complex band limited) are uniformly stable to deformations if $\psi_{\lambda,\tau}(t) = \psi_{\lambda}(t - \tau(t))$ then

$$\|\psi_{\lambda} - \psi_{\lambda,\tau}\| \leq C \sup_{t} |\nabla \tau(t)|.$$

- Wavelets are sparse representations of functions
- Wavelet Wavelets selfissed information.
- Wavelets can be locally translation invariant
 - Wavelets provide sparse representations.

Sparsity of Wavelet Transforms

Singularity is preserved in multiscale transform

- The modulus $|x \star \psi_{\lambda_1}|$ is a regular envelop
- The average $|x \star \psi_{\lambda_1}| \star \phi(t)$ is invariant to small translations relatively to the support of ϕ .

- The modulus $|x \star \psi_{\lambda_1}|$ is a regular envelop
- The average $|x \star \psi_{\lambda_1}| \star \phi(t)$ is invariant to small translations relatively to the support of ϕ .
- Full translation invariance at the limit: $\lim_{\phi \to 1} |x \star \psi_{\lambda_1}| \star \phi(t) = \int |x \star \psi_{\lambda_1}(u)| \, du = \|x \star \psi_{\lambda_1}\|_1$ but for invariants

but few invariants.

 $Wx = \begin{pmatrix} x \star \phi(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{t,\lambda} \text{ is linear and } ||Wx|| = ||x||$ $\rho(u) = |u|$ $|W|x = \begin{pmatrix} x \star \phi(t) \\ |x \star \psi_{\lambda}(t)| \end{pmatrix}_{t,\lambda} \text{ is non-linear}$

- it is contractive $|||W|x - |W|y|| \le ||x - y||$ because for $(a, b) \in \mathbb{C}^2$ $||a| - |b|| \le |a - b|$

- it preserves the norm |||W|x|| = ||x||

Wavelet Scattering Network

Stability of Wavelet Scattering Transform

 \Rightarrow linear discriminative classification from $\Phi x = Sx$

Summary: Wavelet Scattering Net

Scattering Networks

[Mallat '12]

Scattering Networks

[Mallat '12]

Stability of scattering representations

• Non-expansive mapping

 $\|S_J x - S_J y\| \le \|x - y\|$

• Deformation insensitivity

$$D_{\tau}x(u) = x(u - \tau(u)), ||S_J D_{\tau}x - S_J x|| \le C(\tau, J) ||x||$$

No fitting,
Thus no overfitting!

Group Invariants/ $tability \star \phi(t)$

- The modulus $|x \star \psi_{\lambda_1}|$ is a regular envelop
- Translation Invariance:
 - The average $|x \star \psi_{\lambda_1}| \star \phi(t)$ is invariant to small translations relatively to the support of ϕ .
 - Full translation invariance at the limit:

$$\lim_{\phi \to 1} |x \star \psi_{\lambda_1}| \star \phi(t) = \int |x \star \psi_{\lambda_1}(u)| \, du = \|x \star \psi_{\lambda_1}\|_1$$

but few invariants.

Stable Small Deformations:

stable to deformations $x_{\tau}(t) = x(t - \tau(t))$ $\|Sx - Sx_{\tau}\| \le C \sup_{t} |\nabla \tau(t)| \|x\|$

Applications and extensions:

- Invertibility/completeness of representation [Waldspurger et al. '12]
- Extension to signals on graphs [Chen et al. '14] [Cheng et al. '16]
- With general family of filters [Bolcskei et al. '15] [Czaja et al. '15]

Feature Extraction

Other Invariants? Cross-channel pooling!

 L_j is composed of convolutions and subs samplings:

$$x_j(u,k_j) = \rho\Big(x_{j-1}(\cdot,k) \star h_{k_j,k}(u)\Big)$$

No channel communication: what limitations ?

• L_j is a linear combination of convolutions and subsampling:

$$x_{j}(u,k_{j}) = \rho \left(\sum_{k} x_{j-1}(\cdot,k) \star h_{k_{j},k}(u) \right)$$

sum across channels

What is the role of channel connections ? Linearize other symmetries beyond translations.

• Channel connections linearize other symmetries.

 Invariance to rotations are computed by convolutions along the rotation variable θ with wavelet filters.
⇒ invariance to rigid mouvements.

___ Wavelet Transform on a Group ____ Laurent Sifre • Roto-translation group $G = \{g = (r, t) \in SO(2) \times \mathbb{R}^2\}$ $(r,t) \cdot x(u) = x(r^{-1}(u-t))$ • Averaging on G: $X \circledast \overline{\phi}(g) = \int_{C} X(g') \overline{\phi}(g'^{-1}g) dg'$ • Wavelet transform on G: $W_2 X = \begin{pmatrix} X \circledast \phi(g) \\ X \circledast \overline{\psi}_{\lambda_2}(g) \end{pmatrix}_{\lambda_2 = g}$. scalo-roto-translation translation + renormalization $x \longrightarrow |W_1| \longrightarrow |x \star \psi_{2^j r}(t)| = X(2^j, r, t) \longrightarrow |W_2| \longrightarrow |X \circledast \overline{\psi}_{\lambda_2}(2^j, r, t)|$ $x \star \phi(t)$ $X \circledast \overline{\phi}(2^j, r, t)$

Wiatowski-Bolcskei'15

- Scattering Net by Mallat et al. so far
 - Wavelet Linear filter
 - Nonlinear activation by modulus
 - Average pooling
- Generalization by Wiatowski-Bolcskei'15
 - Filters as frames
 - Lipschitz continuous Nonlinearities
 - General Pooling: Max/Average/Nonlinear, etc.

Generalization of Wiatowski-Bolcskei'15

Scattering networks ([Mallat, 2012], [Wiatowski and HB, 2015])

General scattering networks guarantee [Wiatowski & HB, 2015]

- (vertical) translation invariance
- small deformation sensitivity

essentially irrespective of filters, non-linearities, and poolings!

Wavelet basis -> filter frame

Building blocks

Basic operations in the n-th network layer

Filters: Semi-discrete frame $\Psi_n := {\chi_n} \cup {g_{\lambda_n}}_{\lambda_n \in \Lambda_n}$

 $A_n \|f\|_2^2 \le \|f * \chi_n\|_2^2 + \sum_{\lambda_n \in \Lambda_n} \|f * g_{\lambda_n}\|^2 \le B_n \|f\|_2^2, \quad \forall f \in L^2(\mathbb{R}^d)$

e.g.: Structured filters

Frames: random or learned filters

Building blocks

Basic operations in the n-th network layer

Filters: Semi-discrete frame $\Psi_n := \{\chi_n\} \cup \{g_{\lambda_n}\}_{\lambda_n \in \Lambda_n}$

 $A_n \|f\|_2^2 \le \|f * \chi_n\|_2^2 + \sum_{\lambda_n \in \Lambda_n} \|f * g_{\lambda_n}\|^2 \le B_n \|f\|_2^2, \quad \forall f \in L^2(\mathbb{R}^d)$

e.g.: Unstructured filters

Building blocks

Basic operations in the *n*-th network layer

e.g.: Learned filters

Nonlinear activations

Building blocks

Basic operations in the n-th network layer

Non-linearities: Point-wise and Lipschitz-continuous

 $||M_n(f) - M_n(h)||_2 \le L_n ||f - h||_2, \quad \forall f, h \in L^2(\mathbb{R}^d)$

⇒ Satisfied by virtually **all** non-linearities used in the **deep learning literature**!

ReLU: $L_n = 1$; modulus: $L_n = 1$; logistic sigmoid: $L_n = \frac{1}{4}$; ...

Pooling Building blocks

Basic operations in the n-th network layer

Pooling: In continuous-time according to

$$f \mapsto S_n^{d/2} P_n(f)(S_n \cdot),$$

where $S_n \ge 1$ is the **pooling factor** and $P_n : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is R_n -Lipschitz-continuous

⇒ Emulates most poolings used in the deep learning literature!

e.g.: Pooling by sub-sampling $P_n(f) = f$ with $R_n = 1$

e.g.: Pooling by averaging $P_n(f) = f * \phi_n$ with $R_n = \|\phi_n\|_1$

Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

 $B_n \le \min\{1, L_n^{-2} R_n^{-2}\}, \quad \forall n \in \mathbb{N}.$

Let the pooling factors be $S_n \ge 1$, $n \in \mathbb{N}$. Then,

$$|||\Phi^n(T_t f) - \Phi^n(f)||| = \mathcal{O}\left(\frac{||t||}{S_1 \dots S_n}\right)$$

for all $f \in L^2(\mathbb{R}^d)$, $t \in \mathbb{R}^d$, $n \in \mathbb{N}$.

The condition

$$B_n \le \min\{1, L_n^{-2} R_n^{-2}\}, \quad \forall n \in \mathbb{N},$$

is easily satisfied by normalizing the filters $\{g_{\lambda_n}\}_{\lambda_n \in \Lambda_n}$.

Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

 $B_n \le \min\{1, L_n^{-2} R_n^{-2}\}, \quad \forall n \in \mathbb{N}.$

Let the pooling factors be $S_n \ge 1$, $n \in \mathbb{N}$. Then,

$$|||\Phi^n(T_t f) - \Phi^n(f)||| = \mathcal{O}\left(\frac{||t||}{S_1 \dots S_n}\right),$$

for all $f \in L^2(\mathbb{R}^d)$, $t \in \mathbb{R}^d$, $n \in \mathbb{N}$.

 \Rightarrow Features become **more invariant** with **increasing** network **depth**!

Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

 $B_n \le \min\{1, L_n^{-2} R_n^{-2}\}, \quad \forall n \in \mathbb{N}.$

Let the pooling factors be $S_n \ge 1$, $n \in \mathbb{N}$. Then,

$$||\Phi^n(T_t f) - \Phi^n(f)||| = \mathcal{O}\left(\frac{||t||}{S_1 \dots S_n}\right),$$

for all $f \in L^2(\mathbb{R}^d)$, $t \in \mathbb{R}^d$, $n \in \mathbb{N}$.

Full translation invariance: If $\lim_{n\to\infty} S_1 \cdot S_2 \cdot \ldots \cdot S_n = \infty$, then $\lim_{n\to\infty} |||\Phi^n(T_t f) - \Phi^n(f)||| = 0$

Philosophy behind invariance results

Mallat's "horizontal" translation invariance [Mallat, 2012]: $\lim_{J\to\infty} |||\Phi_W(T_t f) - \Phi_W(f)||| = 0, \quad \forall f \in L^2(\mathbb{R}^d), \ \forall t \in \mathbb{R}^d$

- features become invariant in every network layer, but needs $J \to \infty$
- applies to wavelet transform and modulus non-linearity without pooling

"Vertical" translation invariance:

 $\lim_{n \to \infty} |||\Phi^n(T_t f) - \Phi^n(f)||| = 0, \quad \forall f \in L^2(\mathbb{R}^d), \, \forall t \in \mathbb{R}^d$

- features become more invariant with increasing network depth
- applies to general filters, general non-linearities, and general poolings

Non-linear deformations

Non-linear deformation $(F_{\tau}f)(x) = f(x - \tau(x))$, where $\tau : \mathbb{R}^d \to \mathbb{R}^d$

For "small" τ :

Non-linear deformations

Non-linear deformation $(F_{\tau}f)(x) = f(x - \tau(x))$, where $\tau : \mathbb{R}^d \to \mathbb{R}^d$

For "large" τ :

Deformation sensitivity for signal classes

Consider $(F_{\tau}f)(x) = f(x - \tau(x)) = f(x - e^{-x^2})$

For given τ the amount of deformation induced can depend drastically on $f\in L^2(\mathbb{R}^d)$

Wiatowski-Bolcskei'15 Deformation Stability Bounds

Philosophy behind deformation stability/sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]: $|||\Phi_W(F_{\tau}f) - \Phi_W(f)||| \leq C \left(2^{-J} ||\tau||_{\infty} + J ||D\tau||_{\infty} + ||D^2\tau||_{\infty}\right) ||f||_W,$ for all $f \in H_W \subseteq L^2(\mathbb{R}^d)$

- The signal class H_W and the corresponding norm $\|\cdot\|_W$ depend on the mother wavelet (and hence the network)

Our deformation sensitivity bound:

 $|||\Phi(F_{\tau}f) - \Phi(f)||| \le C_{\mathcal{C}} \|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}(\mathbb{R}^{d})$

- The signal class C (band-limited functions, cartoon functions, or Lipschitz functions) is independent of the network

Wiatowski-Bolcskei'15 Deformation Stability Bounds

Philosophy behind deformation stability/sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]: $|||\Phi_W(F_{\tau}f) - \Phi_W(f)||| \leq C \left(2^{-J} ||\tau||_{\infty} + J ||D\tau||_{\infty} + ||D^2\tau||_{\infty}\right) ||f||_W,$ for all $f \in H_W \subseteq L^2(\mathbb{R}^d)$

- Signal class description complexity implicit via norm $\|\cdot\|_W$

Our deformation sensitivity bound:

 $|||\Phi(F_{\tau}f) - \Phi(f)||| \le C_{\mathcal{C}} \|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}(\mathbb{R}^{d})$

- Signal class description complexity explicit via $C_{\mathcal{C}}$
 - *L*-band-limited functions: $C_{\mathcal{C}} = \mathcal{O}(L)$
 - cartoon functions of size K: $C_{\mathcal{C}} = \mathcal{O}(K^{3/2})$
 - *M*-Lipschitz functions $C_{\mathcal{C}} = \mathcal{O}(M)$
Philosophy behind deformation stability/sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]: $|||\Phi_W(F_{\tau}f) - \Phi_W(f)||| \leq C \left(2^{-J} \|\tau\|_{\infty} + J \|D\tau\|_{\infty} + \|D^2\tau\|_{\infty}\right) \|f\|_W,$ for all $f \in H_W \subseteq L^2(\mathbb{R}^d)$

- The bound depends explicitly on higher order derivatives of $\boldsymbol{\tau}$

Our deformation sensitivity bound:

 $|||\Phi(F_{\tau}f) - \Phi(f)||| \le C_{\mathcal{C}} \|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}(\mathbb{R}^{d})$

- The bound implicitly depends on derivative of τ via the condition $\|D\tau\|_\infty \leq \frac{1}{2d}$

Philosophy behind deformation stability/sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]: $|||\Phi_W(F_{\tau}f) - \Phi_W(f)||| \leq C \left(2^{-J} \|\tau\|_{\infty} + J \|D\tau\|_{\infty} + \|D^2\tau\|_{\infty}\right) \|f\|_W,$ for all $f \in H_W \subseteq L^2(\mathbb{R}^d)$

- The bound is *coupled* to horizontal translation invariance $\lim_{J\to\infty} |||\Phi_W(T_tf) - \Phi_W(f)||| = 0, \quad \forall f \in L^2(\mathbb{R}^d), \ \forall t \in \mathbb{R}^d$

Our deformation sensitivity bound:

 $|||\Phi(F_{\tau}f) - \Phi(f)||| \le C_{\mathcal{C}} \|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}(\mathbb{R}^{d})$

- The bound is *decoupled* from vertical translation invariance $\lim_{n \to \infty} |||\Phi^n(T_t f) - \Phi^n(f)||| = 0, \quad \forall f \in L^2(\mathbb{R}^d), \, \forall t \in \mathbb{R}^d$

What is in between?

Scattering

- No parameters in the convolutional layers
- Most "control" of regularity and robustness
- Strong performance and explainable features

• Fully trained by large volume of data

CNN

- Lots of parameters (largest model capacity)
- Least "control" of regularity and robustness
- Best performance but not explainable

Decomposed Convolutional Filters (DCF)

Xiuyuan Cheng et al.

https://arxiv.org/abs/1802.04145

Decomposition of Convolutional Filters

$$x^{(0)} \mapsto x^{(1)} \mapsto \cdots \mapsto x^{(l-1)} \mapsto x^{(l)} \mapsto \cdots$$

The mapping in a convolutional layer

$$x^{(l)}(u,\lambda) = \sigma\left(\sum_{\lambda'} \int W^{(l)}_{\lambda',\lambda}(v') x^{(l-1)}(u+v',\lambda') dv' + b^{(l)}(\lambda)\right)$$

Decomposition of Convolutional Filters

Introducing bases $\psi_{m{k}}$

$$W_{\lambda',\lambda}(u) = \sum_{k=1}^{K} (a_{\lambda',\lambda})_k \psi_k(u),$$

12

Decomposition of Convolutional Filters

• Filters viewed in tensors

• Psi prefixed, a trained from data

Reduction in the Number of Parameters

- Number of parameters
 - Regular conv layer: $L \times L \times M' \times M$
 - DCF layer: $K \times M' \times M$
- Forward-pass computation
 - Regular conv layer: $M'W^2 \cdot M(1+2L^2)$
 - DCF layer: $M'W^2 \cdot 2K(L^2 + M)$

A factor of
$$\frac{K}{L^2}$$
 !

- The convolution network operators L_j have many roles:
 - Linearize non-linear transformations (symmetries)
 - Reduce dimension with projections
 - Memory storage of « characteristic » structures
- Difficult to separate these roles when analyzing learned networks

- Can we recover symmetry groups from the matrices *Lj*?
- What kind of groups ?
- Can we characterise the regularity of f(x) from these groups ?
- Can we define classes of high-dimensional « regular » functions that are well approximated by deep neural networks ?
- Can we get approximation theorems giving errors depending on number of training exemples, with a fast decay ?

Group Invariant and Equivariant Networks

Cohen, Welling, <u>https://arxiv.org/abs/1602.07576</u>

Sannai, Takai, Cordonnier, <u>https://arxiv.org/abs/1903.01939v2</u>

Definition 2.1. Let G be a group and X and Y two sets. We assume that G acts on X (resp. Y) by $g \cdot x$ (resp. g * y) for $g \in G$ and $x \in X$ (resp. $y \in Y$). We say that a map $f \colon X \to Y$ is

- *G-invariant* if $f(g \cdot x) = f(x)$ for any $g \in G$ and any $x \in X$,
- *G-equivariant* if $f(g \cdot x) = g * f(x)$ for any $g \in G$ and any $x \in X$.

Group Convolution Neural Network

[Cohen, Welling, https://arxiv.org/abs/1602.07576]

$$[f * \psi^{i}](x) = \sum_{y \in \mathbb{Z}^{2}} \sum_{k=1}^{K^{l}} f_{k}(y) \psi_{k}^{i}(x-y)$$

 $[f \star \psi](g) = \sum \sum f_k(h)\psi_k(g^{-1}h).$ $h \in G \quad k$

Permutation Invariant Functions

When $G = S_n$ and the actions are induced by permutation, we call G-invariant (resp. G-equivariant) functions as *permutation invariant* (resp. *permutation equivariant*) functions.

Theorem 3.1 ([28] Kolmogorov-Arnold's representation theorem for permutation actions). Let $K \subset \mathbb{R}^n$ be a compact set. Then, any continuous S_n -invariant function $f: K \mapsto \mathbb{R}$ can be represented as $f(x_n, x_n) = o\left(\sum_{i=1}^n f(x_i)\right)$ (1)

$$f(x_1, \dots, x_n) = \rho\left(\sum_{i=1}^{n} \phi(x_i)\right)$$
(1)

for some continuous function $\rho \colon \mathbb{R}^{n+1} \to \mathbb{R}$. Here, $\phi \colon \mathbb{R} \to \mathbb{R}^{n+1}; x \mapsto (1, x, x^2, \dots, x^n)^\top$.

Permutation Equivariant Functions

Proposition 4.1. A map $F : \mathbb{R}^n \to \mathbb{R}^n$ is S_n -equivariant if and only if there is a $\mathrm{Stab}(1)$ -invariant function $f : \mathbb{R}^n \to \mathbb{R}$ satisfying $F = (f, f \circ (1 \ 2), \dots, f \circ (1 \ n))^\top$. Here, $(1 \ i) \in S_n$ is the transposition between 1 and i.

Corollary 4.1 (Representation of Stab(1)-invariant function). Let $K \subset \mathbb{R}^n$ be a compact set, let $f: K \longrightarrow \mathbb{R}$ be a continuous and Stab(1)-invariant function. Then, $f(\mathbf{x})$ can be represented as

$$f(\boldsymbol{x}) = f(x_1, \dots, x_n) = \rho\left(x_1, \sum_{i=2}^n \phi(x_i)\right),$$

for some continuous function $\rho \colon \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$. Here, $\phi \colon \mathbb{R} \to \mathbb{R}^n$ is similar as in Theorem 3.1.

Diagram 3: A neural network approximating the Stab(1)-invariant function f

Diagram 2: A neural network approximating S_n -equivariant map F

Thank you!

