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High Dimensional Natural Image
Classification

e High-dimensional z = (z(1), ..., z(d)) € R%:

e Classification: estimate a class label f(x)

given n sample values {z;, y; = f(x;)}i<n

Image Classification = 10° Huge variability

Anchor  Joshua Tree Beaver Lotus Water Lily

P - inside classes

Find invariants



%L_Curse of Dimensionality =1

e Analysis in high dimension: z € R? with d > 10°.

Y

NG
>

e Points are far away in high dimensions

’—l

- 10 points cover [0, 1] at a distance 10~

- 100 points for [0, 1]?

O O0O0O0OO0OO0OO0OO0OO0OO0

)
<

- need 109 points over [0, 1]¢
impossible if d > 20

0000000000 p—_

Q000000000
[c}elelolcloNololoNe]
0000000000
0000000000
0000000000
Q000000000
[c}olelolclcNololeNe]
Q000000000

Q000000000

points are
concentrated
in 29 corners!

. volume sphere of radius r
lim =0
d— 00 volume [O, ’I“]d

= Fuclidean metrics are not appropriate on raw data.




A Blessing from Physical world?
Multiscale “Ycompositional” sparsity

e Variables z(u) indexed by a low-dimensional u: time/space...

pixels in images, particles in physics, words in text...

e Mutliscale interactions of d variables:

A u1
@ .-
. P d
Oal

[ ] u2

From d? interactions to O(log® d) multiscale interactions.

e Multiscale analysis: wavelets on groups of symmetries.
hierarchical architecture.




Learning as an Approximation fn'i

e To estimate f(x) from a sampling {x;, y; = f(z;) }i<m

we must build an M-parameter approximation f; of f.

e Precise sparse approximation requires some ’regularity” .

1 ifzxze

e For binary classification f(x) = { —1 ifz ¢

f(x) = sign(f(x))

where f is potentially regular.

e What type of regularity 7 How to compute fu; 7




1 Hidden Layer Neural Networks :::'5

One-hidden layer neural network: ridge functions p(z.w. + by)

p(wn.:_c + by) ff///

a, = = "Wy,
M
Fur(e) = 3 o plwp + by)
n=1

{wi r}rn and {ay, }, are learned
M non-linear approximation.

Cybenko, Hornik, Stinchcombe, White
Theorem: For ”"resonnable” bounded p(u)

Wn,. T = Zk Wk nlk

QMIITII11N =

Lt eprfPrprgl

and appropriate choices of w,, 1 and a,:

Vf€L0,1]*  lim |If - full=0.

No big deal: curse of dimensionality still there.



M
fur(@) =3 an plwn.a + by)
n=1

— {wk k}k.n and {ay, }, are learned
M non-linear approximation.

IO S

Fourier series: p(u) = el
M
fu(zx) = Z a,, eWn-®
n=1

For nearly all p: essentially same approximation results.




Piecewise Linear Approximation :ﬂ'i

e Piecewise linear approximation: ‘/

p(u) = max(u, 0)

If fis Lipschitz: |f(x) — f(2")| < C|x — 2|
= (@) - f@)l < Ce

Need M = ¢! points to cover [0,1] at a distance ¢

= ||f - full <CM™*




Linear Ridge Approximation :ﬂ'i

e Piecewise linear ridge approximation: z € |0, 1]d

f(aj) — Zan lg(wn-aj - 7”&6) ‘/ >

p(u) = max(u,0)

If fis Lipschitz: |f(x) — f(2")| < C||lz — &'

Sampling at a distance e:
= |f(2) - fl@) < Ce

need M = e~ % points to cover [0,1]? at a distance ¢

= |If = ful < CMH1

Curse of dimensionality!




Approximation with Regularity L:,'i

e What prior condition makes learning possible 7

e Approximation of regular functions in C*[0, 1]%:

Ve,u [f(x) —pu(x)| < Clz —u|® with p,(z) polynomial

(z)
f/\ RN K.

4 Pu(x

Vo= [f(2) —pul@)| < Ce

lz —u| <e
Need M ~%% point to cover [0, 1]¢ at a distance e'/*

= |f = ful < C M~/

e Can not do better in C®[0, 1]¢, not good because s < d.
Failure of classical approximation theory.




m""“ Kernel Learning !n:

Change of variable ®(x) = {¢x () }r<a’

to nearly linearize f (az) which is approximated by:

fx) = Z Wi, P (2
1D pI‘OJGCthIl
Data: = € R? d(r) € R?

Linear Classifier

Metric: ||z — /| [®(z) — @ ()]

e How and when is possible to find such a ¢ ?
e What "regularity” of f is needed 7




mﬂ_lncrease Dimensionality =3

Proposition: There exists a hyperplane separating
any two subsets of N points {®z;}; in dimension d’ > N + 1
if {®z;}; are not in an affine subspace of dimension < V.

= Choose ® increasing dimensionality !

Problem: generalisation, overfitting.

—Hl’—x’HQ)

Example: Gaussian kernel (®(z), ®(z")) = exp ( 902
o

®(x) is of dimension d’ = oo

If o is small, nearest neighbor classifier type:




Spirit in Fisher's Linear Discriminant Analysis

Reduction of Dimensionality __éi'

e Discriminative change of variable ®(x):
O(z) # 0(a') if f(x) # f(2)
= 3f with f(z) = f(®(x))

o If f is Lipschitz: \f(z) — f(zl)| <C|z— 7|
z=%x) < |[f(z)- f(2)] < Cl2(x) - 2(2)]
Discriminative: ||®(z) — ®(2)|| > C~ ' |f(z) — f(2")]

e For z € Q, if () is bounded and a low dimension d’

= |f— ful <CME




mﬂ_Deep Convolution Neworks E-E

e The revival of neural networks: Y. LeCun

X
L1 linear convolution
I I .
neuron ... - R p non-linear scalar: p(u) = max(u,0)
LT PIIIII]
Hienarchical Lot ,
. : 2 linear convolution
mvajriants R
|_!_I!|II| IITTTTT 1T
|
Linearization G
' l Linear Classificat. s
OO OO IIIIrIrI (I)(ZC) > y:f(a:)

Optimize L; with architecture constraints: over 10” parameters
Exceptional results for images, speech, language, bio-data...

Why does it work so well 7 A difficult problem




Py 3

ENS

Deep Convolutional Networks !n‘:

Uk?J

pL J classification

e [, is a linear combination of convolutions and subsampling:

xj(u, kj) = P( > mia( k) hkj,k(u))

sum across channels
e p is contractive: [p(u) — p(u')] < |u — /|

p(u) = max(u,0) or p(u) = |ul




%: E . Many Questions !n'i
(u, k)

ENS
J

pL J classification

 Why convolutions ? Translation covariance.

 Why no overfitting ? Contractions, dimension reduction

e Why hierarchical cascade ?
e Why introducing non-linearities ?
 How and what to linearise ?

» What are the roles of the multiple channels in each layer ?




= = : : : : u
S%!_ﬂ__unear Dimension Reduction _ =

Classes 2. 4h 0, JJ

W e

Q=A{z : f(z)=1t}
(r) % /

If level sets (classes) are parallel to a linear space

then variables are eliminated by linear projections: nvariants.




s@iﬁﬂise for Dimensionality Reduction-¢

Classes +"
Level sets of f(x) { 0
O ={z : flo)=1} I
“®(z)

o If level sets {); are not parallel to a linear space

- Linearise them with a change of variable ®(x)

- Then reduce dimension with linear projections

e Difficult because {); are high-dimensional, irregular,
known on few samples.




S@;Jigyel Set Geometry: Symmetries _. E-i

e Curse of dimensionality = not local but global geometry

Level sets: classes, characterised by their global symmetries.

e A symmetry is an operator g which preserves level sets:

Ve , f(g.x) = f(x) : global

If g1 and g9 are symmetries then g;.g5 is also a symmetry

f(g1.92.) = f(g2.2) = f(x)




i

S'{@f ... Groups of symmetries -

e (G = { all symmetries } is a group: unknown

V(g,d) €G* =g4 €CG
Inverse: VgeG , gteq

Associative: (g.g’).g" = 9-(9/-9”)

If commutative ¢.¢" = ¢’.g : Abelian group.

e Group of dimension n if it has n generators:

g=91" g5 ...g-"

e Lie group: infinitely small generators (Lie Algebra)




. Translation and Deformations !n'

o Dlglt classification:

r(u) 2 (u) =z(u—7(u))
(23 3 5 5 S’ (s

- Globally invariant to the translation group: small

- Locally invariant to small diffeomorphisms: huge group

Vzdeoof thlwv Scott Johnson

https://www.youtube.com/watchev=nUDIoN- Hxs




| T

Rotation and Scaling Variability

e Rotation and deformations

(50(2))

x Diff

)

Group: SO(2

Group: R x Diff(R)

oy
i _

o N

;.._ :
H —.— -
s _, ”r_ .m.

_.M.\-—anna.—-—- “

o Scaling and deformations




Linearize Symmetries :!|:

e A change of variable ®(x) must linearize the orbits {g.x},cc

T D
g1 091-T g 00 0
Q { 0 0
OO O A 0
Q O O o
xT O O O O
132'/
P /
g1-T

e Lipschitz: Vx,g : ||®(x) — ®(g.2)|| < C g



e Digit classification:

2(w) ' (u)
3|/38 | |5 s

- Globally invariant to the translation group

- Locally invariant to small diffeomorphisms

Linearize small
diffeomorphisms:
= Lipschitz regular

Weon <~ A4 T o~ r
- S, = e
o3 3 4 1 -— 20

Johnson

‘A'f_. . ONTE .  asRR
Video of Philipp Scott
https://www.youtube.com/watchev=nUDIoN- Hxs

Translation and Deformations =




Smanslations and Deformations i:f

e Invariance to translations:

gr(u)=z(u—c) = P(g.x)=(x).

e Small diffeomorphisms: g.x(u) = z(u — 7(u))
Metric: ||g[| = [|[VT||cc maximum scaling

Linearisation by Lipschitz continuity

|®(z) = @(g.2)| < C|VTleo -

e Discriminative change of variable:

|®(z) — ()| = C7" |f(z) — f(2)]



ENS

@;ﬂ . Fourier Deformation Instability !n‘:

e Fourier transform #(w) = [x(t) e ™! dt
r.(t) =2t —c) = Z(w)=e "3 (w)
The modulus is invariant to translations:

O(z) = 2| = ||

e Instabilites to small deformations z.(t) = z(t — 7(¢)) :

| |2, (w)| — |z(w)|| is big at high frequencies

.

= 2] = [zl > V7]l 2]




-

i%‘z.u_ Wavelet Transform

e Complex wavelet: 1(t) = 1 (t) + i °(t)
e Dilated: ) (t) =277 (277t) with A=277 .

p(w)? [OA@)? |ghar (w)?

e Wavelet transform: x x ) (t) = /;C(u) Ya(t —u) du

W= ( i >

Unitary: [|[Wz|]* = ||=]]* .




o Complex wavelet: () = %(t) +i°(t) , t = (t1,t2)
rotated and dilated: vy (t) =277 ¢(277rt) with A= (27,7)

real parts imaginary parts

e Wavelet transform: Wgx = ( % ¢(t)

Unitary: ||VV5’7||2 = Hf’fuz :




mz_ﬂ_Why Wavelets ?

e Wavelets are uniformly stable to deformations:

if by - (£) = P (t — 7(t)) then

|¥x — ¥ar

| < C sup |VT7(1)] .
¢

e Wayvelets separate multiscale information.

e Wavelets provide sparse representations.



Why Waveletse

» Wavelets (complex band limited) are uniformly stable to deformations

if ¥ -(t) = Yr(t —7(t)) then

|[YA —Ua .|| < C Slip V()] .

» Wavelets are sparse representations of functions
» Wavelets separate multiscale information

» Wavelets can be locally franslation invariant




Sparsity of Wavelet Transtorms

oxin, (0] =| [ 2wt - u)df

m‘-""‘ Singular Functions -~

MMVM s
b JU




Singularity is preserved in multiscale transform

m_ Singular Functions -

|z %y, (B)] = ‘/x(u)gb\l (t —u) du|
x(t)

(W //‘
] %

vy

1
U
ok, (1) o JL
/xQ
S S

Second wavelet transform modulus

[ % o, | % o (1) )
[ % o |+, (D))

Wi |2 % or, = ( ‘




%_Wavelet Translation Invariance !:ﬂ

zx 9, () = 2 x93, () +izx U} (1)

I
[
a
L ]
'y 1
' o
[ e W o]
. W
' .
(- A
L e
(- .
J
ot
-




m;h_Wavelet Translation Invariance ﬂj

5 s, ()] = /% 03, (D2 + |2 v}, ()2 pooling

e The modulus |z x ), | is a regular envelop




Mavelet Translation Invariance ﬂj

LS}
Ay

e The modulus |z % 1y, | is a regular envelop

e The average |z x 1y, | x ¢(t) is invariant to small translations

relatively to the support of ¢.




e The modulus |z x 1y, | is a regular envelop

e The average |z x 1y, | * ¢(t) is invariant to small translations

relatively to the support of ¢.

e Full translation invariance at the limit:

lim |2 5 s, | * 61 =/|x*w1<u>|du= %, 1

p—1
but few invariants.




rE%;,_,_Recovering Lost Information !n‘:

|$*¢)\1|

M\ o ‘fgb

e The high frequencies of |x x vy, | are in wavelet coefficients:

B |z * 1y, | * D(t)
Wz 1y, | = ( \g;*wj\*wg(t) )t,AQ

e Translation invariance by time averaging the amplitude:

\V/Ala)\Qa ||$*¢>\1|*¢>\2’*¢(t)




If u > 0 then p(u) = u

p has no effect after an averaging.

e Sparse representation Scale




mﬂ_Contraction

sz( zx O(¢) ) is Tinear and ||z = [z
t. A\

x*¢A(t)
plu) = |u
B x * ¢(t) : :
Wz = ( P )w\ is non-linear

- it is contractive |[|W]x — |[Wly| < ||z — vy

because for (a,b) € C? ||a| — [b|| < |a — b

- it preserves the norm |||W|z| = ||z||




Wavelet Scattering Network

m" Cascade of Contractions ::j

Ttrop o L

|z x Yy, | * @
[Ws|

w I

e Cascade of contractive operator
[[Wh|z — IWk|ﬂf’H < lz - fL”H with [|[Wi|z| = [[=]| .




S’roblh’ry of Wavelet Scattering Transform
_ Scattering Properties ﬁﬂ-:

T xp (u) \
[z * P, | * P(u)
|2 %) Ay [ % Px, | % p(u)
|z %0 x| * Y, | % Uns| * d(u)

Sx

/ u,)\l,)\g,)\3,...

Theorem: For appropriate wavelets, a scattering is

contractive ||Sz — Sy| < ||z — y||

preserves norms ||Sxz| = ||z||
stable to deformations x.(t) = z(t — 7(t))
2= Sz | < ¢ sup [Vr(e) |||

= linear discriminative classification from ®x = Sz




Summary: Wavelet Scattering Net

x *¢ (u)
|z % Yx, [ * P(u)

» Architechture: Sz = |7 %) x, | % P, | * P(u)
HERSUBWE R WE W E Iy
» Convolutional filters: band-limited wavelets

» Nonlinear activation: modulus (Lipschitz)
= Pooling: LT norm as averaging I%1!--- Cascade of Contractions o4

®» Properfies:

» A Multiscale Sparse Representation

» Norm Preservation (Parseval’s identity):

1Sz]| = [l]

» Contraction:

e Cascade of contractive operators
Wl — [Wi|2'|| < llz = 2| with [[[Wi|z| = [z .

1Sz — Sy|| < ||z —y|

U,>\1,>\2,>\3,...



Scattering Networks [Mallat "12]

Wavelet transform

- Scattering transform

S (sz
|3§' * 1/]]'1,91 | * ¢2J

SJZL’ =
||.CC * ¢j1,91| * "/}j2,92| * ¢2J

!r.
x'* ng

J1<jo < <jm<J

20.



Scattering Networks [Mallat '12]

Stability of scattering representations

* Non-expansive mapping

IS5z = Syl < [lz —yll

« Deformation insensitivity

D,z(u) = z(u — 1)), |[SiDrz— S;z| < C(r,J)|z|

& No fitting,

Thus no overfitting!




Group Invariants/Stability

= Translation Invariance:
e The average |z x ¥y, | *x ¢(t) is invariant to small translations

relatively to the support of ¢.

e Full translation invariance at the limit:

lim |z % s, | % 6(L) :/|xm1<u>|du= &%, 1

p—1

» Stable Small Deformations:

stable to deformations x,(t) = x(t — 7(t))
Sz =Sz | < C sup [V (t)] ||




Applications and extensions:

» |nvertibility/completeness of representation [Waldspurger et al. '12]
» [Extension to signals on graphs [Chen et al. "14] [Cheng et al. "16]

» With general family of filters [Bolcskei et al. '15] [Czaja et al. "15]




Feature Exiraction

m“ Linearized Classification Ed:
Joan Bruna

e Fach class X is represented by a scattering centroid F(SXy)

Affine space model Ay = E(SXg) + V. computed with PCA.
E(SX>)




m;ﬂ_i_git Classification: MNIST ::4

J eSS /79 b bt gl Joan Bruna
67578634¢7¢
{790/ 346
Yyl 90/ ¢ % 9 Y
Supervised
v O Linearpclassiﬁer — v = /@)
Invariants to translations Invariants to specific deformations

Linearises small deformations Separates different patterns
No learning

Classification Errors

Training size | Conv. Net. Scattering
50000 0.4% 0.4%
LeCun et. al.




Other Invariantse
Cross-channel pooling!




Rotation and Scaling Invariance _ =4

UIUC database:
25 classes

e

Laurent Sifre

Scattering classification errors

Training

Scat. Translation

20

20 %




&_ .Deep Convolutional Trees !a'i

ENS

ukJ

x(u) x1(u, k1) za(u, k)

,OL J classification

ooooo

Xy = pLj CI?j_l

L; is composed of convolutions and subs samplings:

No channel communication: what limitations 7




s%:s Deep Convolutional Networks ¢

Ly — IOL]' xj—l

e [, is a linear combination of convolutions and subsampling:

zi(u, k;) = ,0( Z Ti_1(-, k) * hkjk(u))
k

sum across channels

What is the role of channel connections ?

Linearize other symmetries beyond translations.




e Channel connections linearize other symmetries.

| W1

|$*¢21,6|

|5’7*¢22,9|

v Scale B | % a3 )
B

e Invariance to rotations are computed by convolutions
along the rotation variable # with wavelet filters.

= invariance to rigid mouvements.

. . . -;
S,6‘-‘-|§_,__Rotatlon Invariance -



Mavelet Transform on a Group __ -
Laurent Sifre

e Roto-translation group G = {g = (r,t) € SO(2) x R?}
(r,t) . z(u) = z(r™" (u—1))

o Averagingon G: X ®¢(g) = | X(¢')dlg 'g)dg’
G

e Wavelet transform on G: Wy X = ( X ®_€b(9) ) .
X ® ?‘p)\g (g) )\2 g

translation roto-translation

L — ‘Wl’ — \x*ngr(t)‘: Xj(’r, t) — |W2‘_’|X3 ®E)\2<rat)|

| }
x % P(t) X; ® ¢(r,t)




myavelet Transform on a Group _ =«
Laurent Sifre

e Roto-translation group G = {g = (r,t) € SO(2) x R?}
(r,t).z(u) = 2(r t(u—1t))

e Averaging on G: X ® ¢(g) = /GX(g’)E(gllg) dg’

e Wavelet transform on G: WoX = ( X @_qb(g ) ) .
X @ ¢>\2 (g) )\2 g

scalo-roto-translation
+ renormalization

T— |Wi| b= |2 % o5, (8)|= X (27, 1, ) || Wa|l— |X @4y, (27,7,1)

| !
x * (1) X ®o(27,r,t)

translation




1ance
+ Scaling
0.6%

-
-
Laurent Sifre

Nn\ N 71
m,@

W.E .u“#rnwn

Transl + Rotation
2%

Scattering classification errors

Rotation and Scaling Invar

-
.9
ELS
2 =)
-
m2
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<
= o0
‘_ms m
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9! <
O < —
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Yoy
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Wiatowski-Bolcskel’' 15

» Scattering Net by Mallat et al. so far
» Wavelet Linear filter
= Nonlinear activation by modulus
= Average pooling

» Generalization by Wiatowski-Bolcskei’ 15

» Filters as frames
» | pschitz continuous Nonlinearities

» General Pooling: Max/Average/Nonlinear, etc.




Generalization of Wiatowski-Bolcskel' 15

Scattering networks ([Mallat, 2012], [Wiatowski and HB, 2015])

1f* 9,0+ 9,0

N Y€

|{*9A§k>| ) |f*gA§z»\>|
// k/ / \\
2 o f feature map 2
w”
TR X1

feature vector ®(f)

General scattering networks guarantee [Wiatowski & HB, 2015]
- (vertical) translation invariance
- small deformation sensitivity

essentially irrespective of filters, non-linearities, and poolings!




Wavelet basis -> filter frame

Building blocks

Basic operations in the n-th network layer

/

f

N

9\®) - non-lin. H pool.
9\t non-lin. H pool.

Filters: Semi-discrete frame ¥,, := {x»} U{gxr, }r,eA,

Al 117 < 11 * xnllz +

e.g.. Structured filters

> If*gall® < Ballfll3, Vf € L*(RY)

NZEESNIN



Frames: random or learned filters

Building blocks

Basic operations in the n-th network layer

/ 9% I non-lin. H pool.
f

\ 9\ 4 non-lin. H pool.

Filters: Semi-discrete frame ¥, := {x,,} U {gx, }r. e,

AllFIB < *xnl3+ Y I+ 90 l* < BallfI3, VS € LAR?
An€An

e.g.: Unstructured filters

< b R

Building blocks

Basic operations in the n-th network layer

/ 9\%) I non-lin. H pool.
f

\ 950 non-lin. H pool.

Filters: Semi-discrete frame U, := {xn} U{gxr, }r e,

AIFI3 < IF *xal3+ D I *ga.l> < BallflI3,  Vf € L*(RY)
ATLEATL

e.g.: Learned filters

= = £
.



Nonlinear activations

Building blocks

Basic operations in the n-th network layer

/

f

AN

9\ - non-lin. H pool.

9\ 1 non-lin. H pool.

Non-linearities: Point-wise and Lipschitz-continuous

| Mo () = Mu()ll2 < Lollf = hll2, Y f,h e LA(RY)

= Satisfied by virtually all non-linearities used
in the deep learning literature!

1.

ReLU: L, = 1; modulus: L,, = 1; logistic sigmoid: L,, = v e



POOliﬂg Building blocks

Basic operations in the n-th network layer

/ 9\®) - non-lin. H pool.

f

\ 95 I non-lin. H pool.

Pooling: In continuous-time according to
e Sg/an(f)(Sn-),
where S,, > 1 is the pooling factor and P, : L?(R%) — L?(RY) is
R,,-Lipschitz-continuous
= Emulates most poolings used in the deep learning literature!
e.g.: Pooling by sub-sampling P,,(f) = f with R, =1

e.g.. Pooling by averaging P, (f) = f * ¢, with R,, = ||¢n]|,



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

B, <min{l,L %2R %}, VnecN.

Let the pooling factors be S,, > 1, n € N. Then,

2]
O™ (T, f) — P" = —
") - 0" (Plll = 05 )
for all f € L2(Rd), tcR? neN,

The condition

B, <min{l,L *R.*}, VneéeN,

is easily satisfied by normalizing the filters {gy_}x, en, -




Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy
B, <min{l,L*R;*}, VnecN.
Let the pooling factors be S,, > 1, n € N. Then,
l"(f) - (Dl = 0 5 ),
S1...8,
for all f € L?>(R%), t € R, n € N.

= Features become more invariant with increasing network depth!

3

3



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy
B, <min{l, L °R;*}, V¥ne€N.

Let the pooling factors be S,, > 1, n € N. Then,
87T f) - (Il = O =),
S1....5,
for all f € L?>(RY), t € R%, n € N.

Full translation invariance: If lim S7-S55-...-.S,, = oo, then
n—oo

lim [[|®™(T:f) — @"(f)[| =0

n—oo



Philosophy behind invariance results

Mallat's “horizontal” translation invariance [Mallat, 2012]:

Jim [l|@w(Tef) — 2w (NIl =0, Ve L*RY), vt eR

- features become invariant in every network layer, but needs
J — o0

- applies to wavelet transform and modulus non-linearity without
pooling

“Vertical” translation invariance:

lim l|e™(T2f) — " ()l =0, Vfe L*R?), ¥t € R

- features become more invariant with increasing network depth

- applies to general filters, general non-linearities, and general
poolings



Non-linear deformations

Non-linear deformation (F, f)(z) = f(xz — 7(x)), where 7 : RY — R?

For “small” 7:




Non-linear deformations

Non-linear deformation (F, f)(z) = f(z — 7(z)), where 7 : R — R¢

For “large” T:

L g2




Deformation sensitivity for signal classes

Consider (F-f)(x) = f(x — 7(z)) = f(x —e™™")

For given 7 the amount of deformation induced
can depend drastically on f € L?(R?)




Wiatowski-Bolcskel' 15 Deformation Stabllity
Bounds

Philosophy behind deformation stability/sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]:

12w (Frf) = 2w (NIl < C (27 I7lloo + TIDTlloo + 1D lloo) [L.f I
for all f € Hy C L%*(RY)

- The signal class Hyy and the corresponding norm || - ||y depend
on the mother wavelet (and hence the network)

Our deformation sensitivity bound:

[|9(F,f) = (NIl < CellTll,  Vfecc LARY)

- The signal class C (band-limited functions, cartoon functions, or
Lipschitz functions) is independent of the network




Wiatowski-Bolcskel’ 15 Deformation Stability
Bounds

Philosophy behind deformation stability /sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]:
l1@w (Frf) = 2w (NIl < C (277 |ITlloo + T DT lloo + 1 D?Tlloo ) L £ [l
for all f € Hyy C L?(RY)

- Signal class description complexity implicit via norm || - ||w

Our deformation sensitivity bound:

[18(Frf) = (Il < Cell7lls,  VfeCC LARY)

- Signal class description complexity explicit via C¢
- L-band-limited functions: C¢ = O(L)
- cartoon functions of size K: C¢c = O(K3/?)
- M-Lipschitz functions C¢c = O(M)




Philosophy behind deformation stability /sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]:
12w (Frf) = 2w (Il < C 277 |I7lloo + T D7lloo + 1 D7 llo0) IL.f I,
for all f € Hy C L?(RY)

- The bound depends explicitly on higher order derivatives of 7

Our deformation sensitivity bound:

N1®(Ff) = (NIl < CellTlls,  Vf e S LA(RY)

- The bound implicitly depends on derivative of 7 via the
condition || D7|o0 < 55



Philosophy behind deformation stability /sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]:
l1@w (Frf) — 2w (HIIl < C (277 lITlloo + TN D7 lloo + 1 D*7lloo) | fllw,
for all f € Hy C L?(RY)

- The bound is coupled to horizontal translation invariance

Tim [|®w (T2f) — 2w ()l =0, Vf€L*(R?), vt R

Our deformation sensitivity bound:
N10(F:f) = (HIl < CellTlg,  ¥f €C S LARY)
- The bound is decoupled from vertical translation invariance

lim |||®™(T;f) — ®"(f)||| =0, Vfe L*R%), Vvt e R?

n—oo



What is in between?

No training until the
classifier

No parameters in the
convolutional layers

Most “control” of
regularity and robustness

Strong performance and
explainable features

Fully trained by large
volume of data

Lots of parameters
(largest model capacity)

Least “control” of
regularity and robustness

Best performance but not
explainable



Decomposed Convolutional Filters
(DCF)

Xiuyuan Cheng et al.
hitps://arxiv.org/abs/1802.04145




Decomposition of Convolutional Filters

The mapping in a convolutional layer

rO(u,\) = o (zx JWEL (@)z0=D (o, N)do' + b“)(/\))




Decomposition of Convolutional Filters

Introducing bases (0

K
Wy a(w) =D (axa)kve(w).

=1

IIIE

OLLIR %2 DR IO
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Decomposition of Convolutional Filters

* Filters viewed in tensors

. M
@ M,
= X
L K
U X ax, )
(L, L, M', M] L,L,1,K] 1,1, KM', M]

* Psi prefixed, a trained from data




Reduction in the Number of Parameters

* Number of parameters
* Regular conv layer: LxLxM xM
« DCF layer: Kx M xM

* Forward-pass computation

* Regular conv layer: M'W?. M(1+2L?)
« DCF layer: M'W?.2K(L* + M)

K

A factor of 7 .




@; E .Deep Convolutional Networks !n'i

CBJukJ

pL J Cl&SSlﬁcatlon

e The convolution network operators L; have many roles:
- Linearize non-linear transformations (symmetries)
- Reduce dimension with projections
- Memory storage of « characteristic » structures

« Difficult to separate these roles when analyzing learned networks




Open Problems =5

”U,]{IJ

pL J classification

e Can we recover symmetry groups from the matrices Lj ?
e What kind of groups ?

e Can we characterise the regularity of f(x) from these groups ?

e Can we define classes of high-dimensional « regular » functions
that are well approximated by deep neural networks ?

e Can we get approximation theorems giving errors depending on
number of training exemples, with a fast decay ?




Group Invariant and Equivariant
Networks

Cohen, Welling, https.//arxiv.org/abs/1602.07576
Sannai, Takai, Cordonnier, https://arxiv.org/abs/1903.01939v2




Definition 2.1. Let G be a group and X and Y two sets. We assume that GG acts on X (resp. Y) by
g-x(resp. gxy)forge Gandx € X (resp. y € Y). Wesay thatamap f: X — Y is

o G-invariantif f(g-z) = f(x) forany g € G and any = € X,
o G-equivariantif f(g-x) = gx* f(x) forany g € G and any x € X.




Group Convolution Neural Network
[Cohen, Welling, https://arxiv.org/abs/1602.07576]

Kl

f (@) =D > fuly)vi(z —y)

fl(g) = > frulh)ve(g™ h).




Permutation Invariant Functions

When G = S, and the actions are induced by permutation, we call G-invariant (resp. GG-equivariant)
functions as permutation invariant (resp. permutation equivariant) functions.

Theorem 3.1 ([28] Kolmogorov-Arnold’s representation theorem for permutation actions). Let K C
R"™ be a compact set. Then, any continuous S,,-invariant function f: K — R can be represented

fl@e,an) = p (Zcb(wi)) (1)

for some continuous function p: R"*t — R. Here, ¢: R — R Lz s (1, 2,22,...,2™) ",

® =
o
o=




Permutation Equivariant Functions

Proposition 4.1. A map F': R" — R" is S,,-equivariant if and only if there is a Stab(1)-invariant
function f: R™ — R satisfying ' = (f,fo(12),...,fo(1n))". Here, (1i) € S, is the
transposition between 1 and 1.

Corollary 4.1 (Representation of Stab(1)-invariant function). Let K C R"™ be a compact set, let
: K — R be a continuous and Stab(1)-invariant function. Then, f(x) can be represented as

fl®) = f(x1,...,20) = p (931,2@5(%)) :

for some continuous function p: R*"*' — R. Here, ¢: R — R" is similar as in Theorem 3.1.

Diaeram 3: A neural network approximatine the Stab(1)-invariant function



Diagram 2: A neural network approximating .S,,-equivariant map F'




Thank you!




