
Symmetry and
Network Architectures

Yuan YAO
HKUST
Based on Mallat, Bolcskei, Cheng talks etc.

1

Acknowledgement

The Deep Learning Tsunami

Why now?

Where are the Intellectuals?

Relevant Theoretical Approaches

Course Structure

Stats 385 Fall 2017

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

A following-up course at HKUST: https://deeplearning-math.github.io/

High Dimensional Natural Image
Classification

given n sample values {xi , yi = f(xi)}in

• High-dimensional x = (x(1), ..., x(d)) 2 Rd
:

• Classification: estimate a class label f(x)

 High Dimensional Learning

Image Classification d = 106

Anchor Joshua Tree Beaver Lotus Water Lily

Huge variability

inside classes

Find invariants

• Analysis in high dimension: x ⇥ Rd with d � 106.

- need 10d points over [0, 1]d

impossible if d � 20

) Euclidean metrics are not appropriate on raw data.

 Curse of Dimensionality

• Points are far away in high dimensions d:

- 10 points cover [0, 1] at a distance 10�1

o
o

o
o

o
o

o
o

o
o

- 100 points for [0, 1]2
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

points are
concentrated
in 2d corners!

lim
d!1

volume sphere of radius r
volume [0, r]d

= 0

A Blessing from Physical world?
Multiscale “compositional” sparsity Multiscale Separation

• Variables x(u) indexed by a low-dimensional u: time/space...

pixels in images, particles in physics, words in text...

From d
2 interactions to O(log2 d) multiscale interactions.

• Mutliscale interactions of d variables:

• Multiscale analysis: wavelets on groups of symmetries.
hierarchical architecture.

u1

u2

• To estimate f(x) from a sampling {xi , yi = f(xi)}iM

• Precise sparse approximation requires some ”regularity”.

• For binary classification f(x) =
⇢

1 if x ⇥ �
�1 if x /⇥ �

f(x) = sign(f̃(x))

where f̃ is potentially regular.

• What type of regularity ? How to compute fM ?

we must build an M -parameter approximation fM of f .

 Learning as an Approximation

�(wn.x + bn)

M

fM (x) =
MX

n=1

�n ⇥(wn.x + bn)
↵nwn.x =

P
k wk,nxk

One-hidden layer neural network:

{wk,k}k,n and {�n}n are learned
non-linear approximation.

 1 Hidden Layer Neural Networks

d

x

fM (x) =
MX

n=1

↵n e
iwn.x

For nearly all ⇢: essentially same approximation results.

Fourier series: ⇢(u) = eiu

 Piecewise Linear Approximation

f(x)
x✏

• Piecewise linear approximation:

⇢(u) = max(u, 0)
f̃(x) =

X

n

an ⇢(x� n✏)

n✏

)

Need M = ✏�1 points to cover [0, 1] at a distance ✏

kf � fMk CM�1

If f is Lipschitz: |f(x)� f(x0)| C |x� x0|

) |f(x)� f̃(x)| C ✏.

 Linear Ridge Approximation

⇢(u) = max(u, 0)

need M = ✏�d points to cover [0, 1]d at a distance ✏

) kf � fMk CM�1/d

Curse of dimensionality!

f̃(x) =
X

n

an ⇢(wn.x� n✏)

• Piecewise linear ridge approximation: x 2 [0, 1]d

Sampling at a distance ✏:

) |f(x)� f̃(x)| C ✏.

If f is Lipschitz: |f(x)� f(x0)| C kx� x0k

• What prior condition makes learning possible ?

 Approximation with Regularity

⇤x, u |f(x)� pu(x)| ⇥ C |x� u|s with pu(x) polynomial

• Approximation of regular functions in Cs[0, 1]d:

f(x)

pu(x)

xu

|x� u| ✏1/s) |f(x)� pu(x)| C ✏

Need M�d/s point to cover [0, 1]d at a distance ✏1/s

kf � fMk CM�s/d)

• Can not do better in Cs[0, 1]d, not good because s ⌧ d.
Failure of classical approximation theory.

Data:

 Kernel Learning

x 2 Rd

x

Change of variable �(x) = {�k(x)}kd0

f̃(x) = h�(x) , wi =
X

k

wk �k(x) .

to nearly linearize f(x), which is approximated by:

1D projection

• What ”regularity” of f is needed ?

• How and when is possible to find such a � ?

Metric: kx� x0k

�

Linear Classifier

�(x) 2 Rd0

w

k�(x)� �(x0)k

Spirit in Fisher’s Linear Discriminant Analysis

 Reduction of Dimensionality

) kf � fMk C M�1/d0

�(x) 6= �(x0) if f(x) 6= f(x0)

) 9f̃ with f(x) = f̃(�(x))

• For x 2 ⌦, if �(⌦) is bounded and a low dimension d0

• Discriminative change of variable �(x):

, |f(x)� f(x0)| C k�(x)� �(x0)kz = �(x)

• If f̃ is Lipschitz: |f̃(z)� f̃(z0)| C kz � z0k

Discriminative: k�(x)� �(x0)k � C�1 |f(x)� f(x0)|

x

Linear Classificat.

⇢

linear convolution

linear convolution

 Deep Convolution Neworks

L2

⇢

�(x)

...

non-linear scalar:

L1

neuron

Why does it work so well ?

Optimize Lj with architecture constraints: over 10
9
parameters

Exceptional results for images, speech, language, bio-data...

⇢(u) = max(u, 0)

• The revival of neural networks: Y. LeCun

Hierarchical

invariants

Linearization

y = f̃(x)

A di�cult problem

x(u) x1(u, k1)
x2(u, k2)

xJ(u, kJ)

k1 k2

 Deep Convolutional Networks

⇢L1
⇢LJ

xj = ⇢Lj xj�1

xj(u, kj) = ⇢
⇣X

k

xj�1(·, k) ? hkj ,k(u)
⌘

sum across channels

classification

• Lj is a linear combination of convolutions and subsampling:

• ⇢ is contractive: |⇢(u)� ⇢(u0)| |u� u0|

⇢(u) = max(u, 0) or ⇢(u) = |u|

 Many Questions

• Why convolutions ? Translation covariance.
• Why no overfitting ? Contractions, dimension reduction

• Why hierarchical cascade ?
• Why introducing non-linearities ?
• How and what to linearise ?
• What are the roles of the multiple channels in each layer ?

x(u) x1(u, k1)
x2(u, k2)

xJ(u, kJ)

k1 k2

⇢L1
⇢LJ classification

⇢Lj

 Linear Dimension Reduction

Level sets of f(x)

⌦t = {x : f(x) = t}

⌦1 ⌦2 ⌦3
Classes

by linear projections: invariants.

If level sets (classes) are parallel to a linear space

then variables are eliminated

�(x)

x

Linearise for Dimensionality Reduction

Level sets of f(x)

⌦t = {x : f(x) = t}

• If level sets ⌦t are not parallel to a linear space

- Linearise them with a change of variable �(x)

- Then reduce dimension with linear projections

Classes

⌦1
⌦2

⌦3

• Di�cult because ⌦t are high-dimensional, irregular,
known on few samples.

�(x)

x

Level Set Geometry: Symmetries

• A symmetry is an operator g which preserves level sets:

8x , f(g.x) = f(x) .: global

g
g

Level sets: classes

⌦1

⌦2

• Curse of dimensionality) not local but global geometry

f(g1.g2.x) = f(g2.x) = f(x)

If g1 and g2 are symmetries then g1.g2 is also a symmetry

, characterised by their global symmetries.

 Groups of symmetries

• G = { all symmetries } is a group: unknown

8(g, g0) 2 G2) g.g0 2 G

8g 2 G , g�1 2 G

(g.g0).g00 = g.(g0.g00)

Inverse:

Associative:

If commutative g.g0 = g0.g : Abelian group.

• Group of dimension n if it has n generators:

g = gp1
1 gp2

2 ... gpn
n

• Lie group: infinitely small generators (Lie Algebra)

x(u)

 Translation and Deformations

Video of Philipp Scott Johnson

• Digit classification:

- Globally invariant to the translation group

- Locally invariant to small di↵eomorphisms

: small

: huge group

x0(u) = x(u� ⌧(u))

⌦3 ⌦5

https://www.youtube.com/watch?v=nUDIoN-_Hxs

SO(2)⇥Di�(SO(2))Group:

• Rotation and deformations

• Scaling and deformations

R⇥Di�(R)Group:

 Rotation and Scaling Variability

 Linearize Symmetries
• A change of variable �(x) must linearize the orbits {g.x}g2G

x

gp1 .xg1x

gp1 .x
0

g1x
0

x0

• Linearise symmetries with a change of variable �(x)

�(gp1 .x
0)�(x0)

�(x)

�(gp1 .x)

• Lipschitz: 8x, g : k�(x)� �(g.x)k C kgk

x(u) x0(u)

 Translation and Deformations

Video of Philipp Scott Johnson

• Digit classification:

- Globally invariant to the translation group

- Locally invariant to small di↵eomorphisms

Linearize small
di↵eomorphisms:
) Lipschitz regular

https://www.youtube.com/watch?v=nUDIoN-_Hxs

 Translations and Deformations

• Invariance to translations:

g.x(u) = x(u� c)) �(g.x) = �(x) .

• Small di↵eomorphisms: g.x(u) = x(u� ⌧(u))

Metric: kgk = kr⌧k1 maximum scaling

Linearisation by Lipschitz continuity

k�(x)� �(g.x)k C kr⌧k1 .

k�(x)� �(x0)k � C�1 |f(x)� f(x0)|

• Discriminative change of variable:

|bx(�)||bx⌧ (�)|

• Fourier transform x̂(!) =
R
x(t) e�i!t dt

The modulus is invariant to translations:

) k|x̂|� |x̂⌧ |k � kr⌧k1 kxk

�(x) = |x̂| = |x̂c|

 Fourier Deformation Instability

| |x̂⌧ (�)|� |x̂(�)| | is big at high frequencies
• Instabilites to small deformations x� (t) = x(t� �(t)) :

!

xc(t) = x(t� c)) x̂c(!) = e�ic! x̂(!)

⌧(t) = ✏ t

• Dilated:

Unitary: �Wx�2 = �x�2 .

• Complex wavelet: (t) = a(t) + i b(t)

x ? �(t) =
Z

x(u) �(t� u) du

⇥�(t) = 2�j ⇥(2�jt) with � = 2�j .

 Wavelet Transform

|�̂�(⇥)|2

�

|�̂��(⇥)|2

�� �0

|�̂(⇥)|2��(t)
���(t)

Wx =
✓

x ? �(t)
x ? �(t)

◆

t,�

• Wavelet transform:

x̂ (�)

rotated and dilated:

real parts imaginary parts

• Complex wavelet: (t) = a(t) + i b(t) , t = (t1, t2)

 �(t) = 2�j (2�jrt) with � = (2j , r)

 Image Wavelet Transform

Wx =
✓

x ? �(t)
x ? �(t)

◆

t,�

Unitary: �Wx�2 = �x�2 .

• Wavelet transform:

|�̂�(⇥)|2

�1

�2

• Wavelets are uniformly stable to deformations:

if �,⌧ (t) = �(t� ⌧(t)) then

⇤⇥� � ⇥�,⇥⇤ ⇥ C sup
t

|⌅�(t)| .

 Why Wavelets ?

• Wavelets separate multiscale information.

• Wavelets provide sparse representations.

Why Wavelets?

´ Wavelets (complex band limited) are uniformly stable to deformations

´ Wavelets are sparse representations of functions

´ Wavelets separate multiscale information

´ Wavelets can be locally translation invariant

• Wavelets are uniformly stable to deformations:

if �,⌧ (t) = �(t� ⌧(t)) then

⇤⇥� � ⇥�,⇥⇤ ⇥ C sup
t

|⌅�(t)| .

 Why Wavelets ?

• Wavelets separate multiscale information.

• Wavelets provide sparse representations.

Sparsity of Wavelet Transforms

x(t)

|x ⇥ ��1(t)| =
���
Z

x(u)��1(t� u) du
���

 �1

1/�1

 Singular Functions

|x ⇥ ��1(t)|

Singularity is preserved in multiscale transform

x(t)

|x ⇥ ��1(t)| =
���
Z

x(u)��1(t� u) du
���

 �1

1/�1

 Singular Functions

|x ⇥ ��1(t)| �2

x(t)

|W1|x =

✓
x ? �2J
|x ? �1 |

◆

�1

First wavelet transform

Modulus improves invariance:

W1x =

✓

x ? �1

◆

�1

x ? �2J

 Wavelet Translation Invariance

x ? �1(t) = x ? a
�1

(t) + i x ? b
�1

(t)|x ? �1(t)| =
q

|x ? a
�1

(t)|2 + |x ? b
�1

(t)|2

|x ? �1 | ? �2J (t)

2J

local translation invariance
x ? �2J (t)

full translation invariance

2J = 1

Second wavelet transform modulus

|W2| |x ? �1 |=
✓

|x ? �1 | ? �2J (t)
||x ? �1 | ? �2(t)|

◆

�2

x ? �1(t) = x ? a
�1

(t) + i x ? b
�1

(t)

 Wavelet Translation Invariance

• The modulus |x ? �1 | is a regular envelop

 Wavelet Translation Invariance

pooling|x ? �1(t)| =
q

|x ? a
�1

(t)|2 + |x ? b
�1

(t)|2

• The modulus |x ? �1 | is a regular envelop

|x ? �1 | ? �(t)

• The average |x ? �1 | ? �(t) is invariant to small translations

relatively to the support of �.

 Wavelet Translation Invariance

• The modulus |x ? �1 | is a regular envelop

|x ? �1 | ? �(t)

• The average |x ? �1 | ? �(t) is invariant to small translations

relatively to the support of �.

lim
�!1

|x ? �1 | ? �(t) =
Z

|x ? �1(u)| du = kx ? �1k1

 Wavelet Translation Invariance

|x ? �1 |

• The high frequencies of |x ? �1 | are in wavelet coe�cients:

W |x ? �1 | =
✓

|x ? �1 | ? �(t)
|x ? �1 | ? �2(t)

◆

t,�2

 Recovering Lost Information

8�1 ,�2 , | | x ? �1 | ? �2 | ? �(t)

• Translation invariance by time averaging the amplitude:

|x ⇤⇥ �1 | ⇤ �

20

22

2J

|x ? 22,✓|

|W1|

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34

J = 3
C = 6
Q = 1

J = 5
C = 8
Q = 1

J = 3
C = 4
Q = 2

1.2

1.2

1.2

0

0

0

φJ

φJ

φJ

{ψθ,j}j,θ

{ψθ,j}j,θ

{ψθ,j}j,θ

A(ω)

A(ω)

A(ω)

θ

j

Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

Scale

21

|x ? 21,✓|

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34

J = 3
C = 6
Q = 1

J = 5
C = 8
Q = 1

J = 3
C = 4
Q = 2

1.2

1.2

1.2

0

0

0

φJ

φJ

φJ

{ψθ,j}j,θ

{ψθ,j}j,θ

{ψθ,j}j,θ

A(ω)

A(ω)

A(ω)

θ

j

Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

|W1|

 Wavelet Filter Bank
x(u)⇢(↵) = |↵|

• Sparse representation

|x ? 2j ,✓|

If u � 0 then ⇢(u) = u

⇢ has no e↵ect after an averaging.

- it preserves the norm �|W |x� = �x�

|W |x =
✓

x ⇤ �(t)
|x ⇤ ⇥�(t)|

◆

t,�

is non-linear

Wx =
✓

x ⇤ �(t)
x ⇤ ⇥�(t)

◆

t,�

is linear and kWxk = kxk

- it is contractive ⇤|W |x� |W |y⇤ ⇥ ⇤x� y⇤
because for (a, b) ⇤ C2 ||a|� |b|| ⇥ |a� b|

 Contraction

⇢(u) = |u|

Wavelet Scattering Network

• Cascade of contractive operators

⇤|Wk|x� |Wk|x0⇤ ⇥ ⇤x� x0⇤ with �|Wk|x� = �x� .

 Cascade of Contractions

x

|W1|

|W2|

|W3|

x ? �

|x ? �1 | ? �

||x ? �1 | ? �2 | ? �

Stability of Wavelet Scattering Transform

Summary: Wavelet Scattering Net

´ Architechture:
´ Convolutional filters: band-limited wavelets

´ Nonlinear activation: modulus (Lipschitz)

´ Pooling: L1 norm as averaging

´ Properties:
´ A Multiscale Sparse Representation

´ Norm Preservation (Parseval’s identity):

´ Contraction:

Sx =

�

⇧⇧⇧⇧⇤

x ⇤� (u)
|x ⇤ ⇥�1 | ⇤ �(u)

||x ⇤⇥ �1 | ⇤ ⇥�2 | ⇤ �(u)
|||x ⇤⇥ �2 | ⇤ ⇥�2 | ⇤ ⇥�3 | ⇤ �(u)

...

⇥

⌃⌃⌃⌃⌅

u,�1,�2,�3,...

contractive kSx� Syk kx� yk

preserves norms kSxk = kxk

stable to deformations x⌧ (t) = x(t� ⌧(t))

kSx� Sx⌧k C sup
t

|r⌧(t)| kxk

) linear discriminative classification from �x = Sx

 Scattering Properties

Theorem: For appropriate wavelets, a scattering is

• Cascade of contractive operators

⇤|Wk|x� |Wk|x0⇤ ⇥ ⇤x� x0⇤ with �|Wk|x� = �x� .

 Cascade of Contractions

x

|W1|

|W2|

|W3|

x ? �

|x ? �1 | ? �

||x ? �1 | ? �2 | ? �

Group Invariants/Stability

´ Translation Invariance:

´ Stable Small Deformations:

• The modulus |x ? �1 | is a regular envelop

|x ? �1 | ? �(t)

• The average |x ? �1 | ? �(t) is invariant to small translations

relatively to the support of �.

lim
�!1

|x ? �1 | ? �(t) =
Z

|x ? �1(u)| du = kx ? �1k1

 Wavelet Translation Invariance

Applications and extensions:

´ Invertibility/completeness of representation [Waldspurger et al. ’12]

´ Extension to signals on graphs [Chen et al. ’14] [Cheng et al. ’16]

´ With general family of filters [Bolcskei et al. ’15] [Czaja et al. ’15]

Feature Extraction

LeCun et. al.

Classification Errors

Joan Bruna

 Digit Classification: MNIST

SJx y = f(x)x Supervised
Linear classifier

Invariants to specific deformations
Separates di↵erent patterns

Invariants to translations
Linearises small deformations

No learning

Training size Conv. Net. Scattering
50000 0.4% 0.4%

Other Invariants?
Cross-channel pooling!

UIUC database:
25 classes

Scattering classification errors
Training Scat. Translation

20 20 %

 Rotation and Scaling Invariance
Laurent Sifre

x(u) x1(u, k1)
x2(u, k2)

xJ(u, kJ)

k1 k2

 Deep Convolutional Trees

⇢L1
⇢LJ

xj = ⇢Lj xj�1

classification

Lj is composed of convolutions and subs samplings:

xj(u, kj) = ⇢
⇣
xj�1(·, k) ? hkj ,k(u)

⌘

No channel communication: what limitations ?

x(u) x1(u, k1)
x2(u, k2)

xJ(u, kJ)

k1 k2

 Deep Convolutional Networks

⇢L1
⇢LJ

xj = ⇢Lj xj�1

xj(u, kj) = ⇢
⇣X

k

xj�1(·, k) ? hkj ,k(u)
⌘

sum across channels

classification

• Lj is a linear combination of convolutions and subsampling:

What is the role of channel connections ?

Linearize other symmetries beyond translations.

 Rotation Invariance

2J |x ? 22,✓|

|x ? 23,✓|Scale

|x ? 21,✓|

|W1|

x ? �J

✓

• Channel connections linearize other symmetries.

• Invariance to rotations are computed by convolutions

along the rotation variable ✓ with wavelet filters.

) invariance to rigid mouvements.

Xj ~ �(r, t)

|Xj ~ �2
(r, t)|

• Averaging on G: X ~ �(g) =
Z

G
X(g0) �(g

0�1g) dg0

• Wavelet transform on G: W2X =
✓

X ~ �(g)
X ~ ⇥�2

(g)

◆

�2,g

.

|W1| |W2|

 Wavelet Transform on a Group

x

x ? �(t)

|x ? 2jr(t)|

translation roto-translation

= Xj(r, t)

(r, t) . x(u) = x(r�1(u� t))

• Roto-translation group G = {g = (r, t) 2 SO(2)⇥ R2}
Laurent Sifre

X ~ �(2j , r, t)

|X ~ �2
(2j , r, t)|

• Averaging on G: X ~ �(g) =
Z

G
X(g0) �(g

0�1g) dg0

• Wavelet transform on G: W2X =
✓

X ~ �(g)
X ~ ⇥�2

(g)

◆

�2,g

.

|W1| |W2|

 Wavelet Transform on a Group

x

x ? �(t)

|x ? 2jr(t)|

translation scalo-roto-translation

= X(2j , r, t)
+ renormalization

(r, t) . x(u) = x(r�1(u� t))

• Roto-translation group G = {g = (r, t) 2 SO(2)⇥ R2}
Laurent Sifre

UIUC database:
25 classes

Scattering classification errors
Training Translation Transl + Rotation + Scaling

20 20 % 2% 0.6%

 Rotation and Scaling Invariance
Laurent Sifre

Wiatowski-Bolcskei’15

´ Scattering Net by Mallat et al. so far
´ Wavelet Linear filter

´ Nonlinear activation by modulus

´ Average pooling

´ Generalization by Wiatowski-Bolcskei’15
´ Filters as frames

´ Lipschitz continuous Nonlinearities

´ General Pooling: Max/Average/Nonlinear, etc.

Generalization of Wiatowski-Bolcskei’15

Scattering networks ([Mallat, 2012], [Wiatowski and HB, 2015])

feature map

feature vector �(f)

f

|f ⇤ g
�
(k)
1
|

· ⇤ �2

||f ⇤ g
�
(k)
1
| ⇤ g

�
(l)
2
|

· ⇤ �3

|f ⇤ g
�
(p)
1
|

· ⇤ �2

||f ⇤ g
�
(p)
1
| ⇤ g

�
(r)
2
|

· ⇤ �3

· ⇤ �1

General scattering networks guarantee [Wiatowski & HB, 2015]

- (vertical) translation invariance

- small deformation sensitivity

essentially irrespective of filters, non-linearities, and poolings!

Wavelet basis -> filter frame

´

Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Filters: Semi-discrete frame n := {�n} [{g�n}�n2⇤n

Ankfk
2
2 kf ⇤ �nk

2
2 +

X

�n2⇤n

kf ⇤ g�nk
2
 Bnkfk

2
2, 8f 2 L

2(Rd)

e.g.: Structured filters

e.g.: Learned filters

Frames: random or learned filters

Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Filters: Semi-discrete frame n := {�n} [{g�n}�n2⇤n

Ankfk
2
2 kf ⇤ �nk

2
2 +

X

�n2⇤n

kf ⇤ g�nk
2
 Bnkfk

2
2, 8f 2 L

2(Rd)

e.g.: Learned filters

Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Filters: Semi-discrete frame n := {�n} [{g�n}�n2⇤n

Ankfk
2
2 kf ⇤ �nk

2
2 +

X

�n2⇤n

kf ⇤ g�nk
2
 Bnkfk

2
2, 8f 2 L

2(Rd)

e.g.: Unstructured filters

e.g.: Learned filters

Nonlinear activations
Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Non-linearities: Point-wise and Lipschitz-continuous

kMn(f)�Mn(h)k2 Lnkf � hk2, 8 f, h 2 L
2(Rd)

) Satisfied by virtually all non-linearities used
in the deep learning literature!

ReLU: Ln = 1; modulus: Ln = 1; logistic sigmoid: Ln = 1
4 ; ...

Pooling Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Pooling: In continuous-time according to

f 7! S
d/2
n Pn(f)(Sn·),

where Sn � 1 is the pooling factor and Pn : L2(Rd) ! L
2(Rd) is

Rn-Lipschitz-continuous

) Emulates most poolings used in the deep learning literature!

e.g.: Pooling by sub-sampling Pn(f) = f with Rn = 1

Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Pooling: In continuous-time according to

f 7! S
d/2
n Pn(f)(Sn·),

where Sn � 1 is the pooling factor and Pn : L2(Rd) ! L
2(Rd) is

Rn-Lipschitz-continuous

) Emulates most poolings used in the deep learning literature!

e.g.: Pooling by sub-sampling Pn(f) = f with Rn = 1

Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Pooling: In continuous-time according to

f 7! S
d/2
n Pn(f)(Sn·),

where Sn � 1 is the pooling factor and Pn : L2(Rd) ! L
2(Rd) is

Rn-Lipschitz-continuous

) Emulates most poolings used in the deep learning literature!

e.g.: Pooling by averaging Pn(f) = f ⇤ �n with Rn = k�nk1

Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

Bn min{1, L�2
n R

�2
n }, 8n 2 N.

Let the pooling factors be Sn � 1, n 2 N. Then,

|||�n(Ttf)� �n(f)||| = O

✓
ktk

S1 . . . Sn

◆
,

for all f 2 L
2(Rd), t 2 Rd

, n 2 N.

The condition

Bn min{1, L�2
n R

�2
n }, 8n 2 N,

is easily satisfied by normalizing the filters {g�n}�n2⇤n .

Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

Bn min{1, L�2
n R

�2
n }, 8n 2 N.

Let the pooling factors be Sn � 1, n 2 N. Then,

|||�n(Ttf)� �n(f)||| = O

✓
ktk

S1 . . . Sn

◆
,

for all f 2 L
2(Rd), t 2 Rd

, n 2 N.

) Features become more invariant with increasing network depth!

Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

Bn min{1, L�2
n R

�2
n }, 8n 2 N.

Let the pooling factors be Sn � 1, n 2 N. Then,

|||�n(Ttf)� �n(f)||| = O

✓
ktk

S1 . . . Sn

◆
,

for all f 2 L
2(Rd), t 2 Rd

, n 2 N.

Full translation invariance: If lim
n!1

S1 · S2 · . . . · Sn = 1, then

lim
n!1

|||�n(Ttf)� �n(f)||| = 0

Philosophy behind invariance results

Mallat’s “horizontal” translation invariance [Mallat, 2012]:

lim
J!1

|||�W (Ttf)� �W (f)||| = 0, 8f 2 L
2(Rd), 8t 2 Rd

- features become invariant in every network layer, but needs
J ! 1

- applies to wavelet transform and modulus non-linearity without
pooling

“Vertical” translation invariance:

lim
n!1

|||�n(Ttf)� �n(f)||| = 0, 8f 2 L
2(Rd), 8t 2 Rd

- features become more invariant with increasing network depth

- applies to general filters, general non-linearities, and general
poolings

Non-linear deformations

Non-linear deformation (F⌧f)(x) = f(x� ⌧(x)), where ⌧ : Rd
! Rd

For “small” ⌧ :

Non-linear deformations

Non-linear deformation (F⌧f)(x) = f(x� ⌧(x)), where ⌧ : Rd
! Rd

For “large” ⌧ :

Deformation sensitivity for signal classes

Consider (F⌧f)(x) = f(x� ⌧(x)) = f(x� e
�x2

)

x

f1(x), (F⌧f1)(x)

x

f2(x), (F⌧f2)(x)

For given ⌧ the amount of deformation induced
can depend drastically on f 2 L

2(Rd)

Wiatowski-Bolcskei’15 Deformation Stability
Bounds

Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound [Mallat, 2012]:

|||�W (F⌧f)��W (f)||| C
�
2�J

k⌧k1+JkD⌧k1+kD
2
⌧k1

�
kfkW ,

for all f 2 HW ✓ L
2(Rd)

- The signal class HW and the corresponding norm k · kW depend
on the mother wavelet (and hence the network)

Our deformation sensitivity bound:

|||�(F⌧f)� �(f)||| CCk⌧k
↵
1, 8f 2 C ✓ L

2(Rd)

- The signal class C (band-limited functions, cartoon functions, or
Lipschitz functions) is independent of the network

Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound [Mallat, 2012]:

|||�W (F⌧f)��W (f)||| C
�
2�J

k⌧k1+JkD⌧k1+kD
2
⌧k1

�
kfkW ,

for all f 2 HW ✓ L
2(Rd)

- Signal class description complexity implicit via norm k · kW

Our deformation sensitivity bound:

|||�(F⌧f)� �(f)||| CCk⌧k
↵
1, 8f 2 C ✓ L

2(Rd)

- Signal class description complexity explicit via CC
- L-band-limited functions: CC = O(L)
- cartoon functions of size K: CC = O(K3/2)
- M -Lipschitz functions CC = O(M)

Wiatowski-Bolcskei’15 Deformation Stability
Bounds

Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound [Mallat, 2012]:

|||�W (F⌧f)��W (f)||| C
�
2�J

k⌧k1+JkD⌧k1+kD
2
⌧k1

�
kfkW ,

for all f 2 HW ✓ L
2(Rd)

- The bound depends explicitly on higher order derivatives of ⌧

Our deformation sensitivity bound:

|||�(F⌧f)� �(f)||| CCk⌧k
↵
1, 8f 2 C ✓ L

2(Rd)

- The bound implicitly depends on derivative of ⌧ via the
condition kD⌧k1

1
2d

Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound [Mallat, 2012]:

|||�W (F⌧f)��W (f)||| C
�
2�J

k⌧k1+JkD⌧k1+kD
2
⌧k1

�
kfkW ,

for all f 2 HW ✓ L
2(Rd)

- The bound is coupled to horizontal translation invariance

lim
J!1

|||�W (Ttf)� �W (f)||| = 0, 8f 2 L
2(Rd), 8t 2 Rd

Our deformation sensitivity bound:

|||�(F⌧f)� �(f)||| CCk⌧k
↵
1, 8f 2 C ✓ L

2(Rd)

- The bound is decoupled from vertical translation invariance

lim
n!1

|||�n(Ttf)� �n(f)||| = 0, 8f 2 L
2(Rd), 8t 2 Rd

Background Summary

CNN

• Fully trained by large
volume of data

• Lots of parameters
(largest model capacity)

• Least “control” of
regularity and robustness

• Best performance but not
explainable

Scattering

• No training until the
classifier

• No parameters in the
convolutional layers

• Most “control” of
regularity and robustness

• Strong performance and
explainable features

What is in between?

Decomposed Convolutional Filters
(DCF)
Xiuyuan Cheng et al.
https://arxiv.org/abs/1802.04145

x(u) x1(u, k1)
x2(u, k2)

xJ(u, kJ)

k1 k2

 Deep Convolutional Networks

⇢L1
⇢LJ classification

• The convolution network operators have many roles:
– Linearize non-linear transformations (symmetries)
– Reduce dimension with projections
– Memory storage of « characteristic » structures

• Difficult to separate these roles when analyzing learned networks

Lj

x(u) x1(u, k1)
x2(u, k2)

xJ(u, kJ)

k1 k2

 Open Problems

⇢L1
⇢LJ classification

• Can we recover symmetry groups from the matrices Lj ?
• What kind of groups ?
• Can we characterise the regularity of f(x) from these groups ?
• Can we define classes of high-dimensional « regular » functions

that are well approximated by deep neural networks ?
• Can we get approximation theorems giving errors depending on

number of training exemples, with a fast decay ?

Group Invariant and Equivariant
Networks
Cohen, Welling, https://arxiv.org/abs/1602.07576
Sannai, Takai, Cordonnier, https://arxiv.org/abs/1903.01939v2

from Rdi to Rdi+1 defined by Zi(x) = ReLU(Wix), where Wi ∈ Rdi+1×di . In this case, di is
called the width of the i-th layer. The output of the deep neural networks is

Y (x) = ZH ◦ ZH−1 . . . Z2 ◦ Z1(x),

where H is called the depth of the deep neural network. We define the width of a deep neural
network as the maximum of the widths of all layers. Our models, which are generalization of
the models in [28], are defined by the invariant/equivariant property of Zi. Before defining the
invariant/equivariant models, we define the invariance/equivariance for functions.

Only two groups will be considered in this paper. The group Sn of permutations of n elements and
its subgroup Stabn(1) of the permutations fixing {1}, properly defined as follows:

Stabn(1) = Stab(1) = {σ ∈ Sn | σ · 1 = 1} .

Definition 2.1. Let G be a group and X and Y two sets. We assume that G acts on X (resp. Y) by
g · x (resp. g ∗ y) for g ∈ G and x ∈ X (resp. y ∈ Y) . We say that a map f : X → Y is

• G-invariant if f(g · x) = f(x) for any g ∈ G and any x ∈ X ,

• G-equivariant if f(g · x) = g ∗ f(x) for any g ∈ G and any x ∈ X .

When G = Sn and the actions are induced by permutation, we call G-invariant (resp. G-equivariant)
functions as permutation invariant (resp. permutation equivariant) functions.

We next consider an action of Sn on vector spaces over R, esspecially, each layers of deep neural
networks. We fix an action “·” of Sn on the set {1, 2, . . . , n}. Then, the left action “·” (we use same
symbol here) of Sn on Rn is induced by

σ · x = σ · (x1, x2, . . . , xn)
⊤ = (xσ−1·1, xσ−1·2, . . . , xσ−1·n)

⊤

for σ ∈ Sn and x = (x1, . . . , xn)⊤ ∈ Rn.

We define G-invariance and G-equivariance for deep neural networks. We can easily confirm that
the models in [28] satisfies these properties.

Definition 2.2. We say that a deep neural network is Sn-equivariant (resp. Sn-preinvariant) if there
are Sn-actions on each layer Rdi and the corresponding map Zi : Rdi → Rdi+1 is Sn-equivariant
(resp. Sn-invariant). We say that a deep neural network is Sn-invariant if there is a natural number
c ≤ H such that Sn-actions on each layer Rdi for 1 ≤ i ≤ c + 1 and the corresponding map
Zi : Rdi → Rdi+1 is Sn-equivariant for 1 ≤ i ≤ c− 1 and Zc : Rdc → Rdc+1 is Sn-preinvariant.

In this paper, we give three main theorems about invariant/equivariant networks. The first one is the
invariant version of universal approximation theorem.

Theorem 2.1 (Permutation invariant version of universal approximation theorem). Let K be a com-
pact set in Rn which is stable for the corresponing Sn action in Rn . Then, for any f : K → RN

which is continuous and permutation invariant and for any ϵ > 0, there is an Sn-invariant ReLU
neural network N such that its represented function RN satisfies ∥f − RN ∥∞ ≤ ϵ. Furthermore,
we can take N as either of the following:

• N has two hidden layers and the width is not bounded, or

• The width is of N is bounded above by n(n+ 2) and the depth is not bounded.

Diagram 1 illustrates the Sn-invariant ReLU neural network appeared in Theorem 2.1. [22] also
showed this theorem. However, we give the bound of the width and the depth. The proof of The-
orem 2.1 is constructive. Firstly, we use the Kolmogorov-Arnold representation theorem to give
a presentation f = ρ (

∑n
i=1 φ(xi)), where f is the objective function. Since φ(x) has only one

variable, we line up the copies of the network which approximates φ(x). Then, by combining Σ and
the network which approximates ρ, we obtain the network which approximates f . By the theorem
of [13], we obtain the bound of the width and the depth.

The second main theorem is the equivariant version.

Theorem 2.2 (Permutation equivariant version of universal approximation theorem). Let K be a
compact set in Rn. Then for any continuous function f : K → Rn which is permutation equivariant

4

Group Convolution Neural Network
[Cohen, Welling, https://arxiv.org/abs/1602.07576]

Group Equivariant Convolutional Networks

tion followed by a correlation is the same as a correlation
followed by a translation:

[[Ltf] ⋆ ψ](x) =
∑

y

f(y − t)ψ(y − x)

=
∑

y

f(y)ψ(y + t− x)

=
∑

y

f(y)ψ(y − (x− t))

= [Lt[f ⋆ ψ]](x).

(8)

And so we say that “correlation is an equivariant map for
the translation group”, or that “correlation and translation
commute”. Using an analogous computation one can show
that also for the convolution, [Ltf] ∗ ψ = Lt[f ∗ ψ].

Although convolutions are equivariant to translation, they
are not equivariant to other isometries of the sampling lat-
tice. For instance, as shown in the supplementary material,
rotating the image and then convolving with a fixed filter is
not the same as first convolving and then rotating the result:

[[Lrf] ⋆ ψ](x) = Lr[f ⋆ [Lr−1ψ]](x) (9)

In words, this says that the correlation of a rotated image
Lrf with a filter ψ is the same as the rotation by r of the
original image f convolved with the inverse-rotated filter
Lr−1ψ. Hence, if an ordinary CNN learns rotated copies
of the same filter, the stack of feature maps is equivariant,
although individual feature maps are not.

6. Group Equivariant Networks
In this section we will define the three layers used in a G-
CNN (G-convolution, G-pooling, nonlinearity) and show
that each one commutes with G-transformations of the do-
main of the image.

6.1. G-Equivariant correlation

The correlation (eq. 7) is computed by shifting a filter and
then computing a dot product with the feature maps. By
replacing the shift by a more general transformation from
some group G, we get the G-correlation used in the first
layer of a G-CNN:

[f ⋆ ψ](g) =
∑

y∈Z2

∑

k

fk(y)ψk(g
−1y). (10)

Notice that both the input image f and the filter ψ are func-
tions of the plane Z2, but the feature map f ⋆ψ is a function
on the discrete groupG (which may contain translations as
a subgroup). Hence, for all layers after the first, the filters ψ
must also be functions on G, and the correlation operation
becomes

[f ⋆ ψ](g) =
∑

h∈G

∑

k

fk(h)ψk(g
−1h). (11)

The equivariance of this operation is derived in complete
analogy to eq. 8, now using the substitution h → uh:

[[Luf] ⋆ ψ](g) =
∑

h∈G

∑

k

fk(u
−1h)ψ(g−1h)

=
∑

h∈G

∑

k

f(h)ψ(g−1uh)

=
∑

h∈G

∑

k

f(h)ψ((u−1g)−1h)

= [Lu[f ⋆ ψ]](g)

(12)

The equivariance of eq. 10 is derived similarly. Note that
although equivariance is expressed by the same formula
[Luf] ⋆ ψ = Lu[f ⋆ ψ] for both first-layer G-correlation
(eq. 10) and full G-correlation (11), the meaning of the
operator Lu is different: for the first layer correlation, the
inputs f and ψ are functions on Z2, so Luf denotes the
transformation of such a function, while Lu[f ⋆ ψ] denotes
the transformation of the feature map, which is a function
on G. For the full G-correlation, both the inputs f and ψ
and the output f ⋆ ψ are functions on G.

Note that if G is not commutative, neither the G-
convolution nor the G-correlation is commutative. How-
ever, the feature maps ψ ⋆ f and f ⋆ ψ are related by the
involution (eq. 6):

f ⋆ ψ = (ψ ⋆ f)∗. (13)

Since the involution is invertible (it is its own inverse), the
information content of f⋆ψ and ψ⋆f is the same. However,
f ⋆ ψ is more efficient to compute when using the method
described in section 7, because transforming a small filter
is faster than transforming a large feature map.

It is customary to add a bias term to each feature map
in a convolution layer. This can be done for G-conv
layers as well, as long as there is only one bias per G-
feature map (instead of one bias per spatial feature plane
within a G-feature map). Similarly, batch normalization
(Ioffe & Szegedy, 2015) should be implemented with a sin-
gle scale and bias parameter per G-feature map in order
to preserve equivariance. The sum of two G-equivariant
feature maps is also G-equivariant, thus G-conv layers
can be used in highway networks and residual networks
(Srivastava et al., 2015; He et al., 2015).

6.2. Pointwise nonlinearities

Equation 12 shows that G-correlation preserves the trans-
formation properties of the previous layer. What about non-
linearities and pooling?

Recall that we think of feature maps as functions on G. In
this view, applying a nonlinearity ν : R → R to a feature
map amounts to function composition. We introduce the

Group Equivariant Convolutional Networks

operatorLg is a concrete instantiation of the transformation
operator Tg referenced in section 2, and one may verify that

LgLh = Lgh. (5)

If g represents a pure translation t = (u, v) ∈ Z2 then
g−1x simply means x − t. The inverse on g in equation 4
ensures that the function is shifted in the positive direction
when using a positive translation, and that Lg satisfies the
criterion for being a homomorphism (eq. 5) even for trans-
formations g and h that do not commute (i.e. gh ≠ hg).

As will be explained in section 6.1, feature maps in a G-
CNN are functions on the groupG, instead of functions on
the group Z2. For functions on G, the definition of Lg is
still valid if we simply replace x (an element of Z2) by h
(an element of G), and interpret g−1h as composition.

It is easy to mentally visualize a planar feature map f :
Z2 → R undergoing a transformation, but we are not used
to visualizing functions on groups. To visualize a feature
map or filter on p4, we plot the four patches associated with
the four pure rotations on a circle, as shown in figure 1
(left). Each pixel in this figure has a rotation coordinate
(the patch in which the pixel appears), and two translation
coordinates (the pixel position within the patch).

e

r
3

r
2

r

e

r
3

r
2

r

Figure 1. A p4 feature map and its rotation by r.

When we apply the 90 degree rotation r to a function on
p4, each planar patch follows its red r-arrow (thus incre-
menting the rotation coordinate by 1 (mod 4)), and simul-
taneously undergoes a 90-degree rotation. The result of this
operation is shown on the right of figure 1. As we will see
in section 6, a p4 feature map in a p4-CNN undergoes ex-
actly this motion under rotation of the input image.

For p4m, we can make a similar plot, shown in figure 2.
A p4m function has 8 planar patches, each one associated
with a mirroring m and rotation r. Besides red rotation
arrows, the figure now includes small blue reflection lines
(which are undirected, since reflections are self-inverse).

Upon rotation of a p4m function, each patch again follows
its red r-arrows and undergoes a 90 degree rotation. Un-
der a mirroring, the patches connected by a blue line will
change places and undergo the mirroring transformation.

e

r

r
2

r
3

m

mr
3

=

rm

r
2
m = mr

2

mr

=

r
3
m

e

r

r
2

r
3

m

mr
3

=

rm

r
2
m = mr

2

mr

=

r
3
m

Figure 2. A p4m feature map and its rotation by r.

This rich transformation structure arises from the group op-
eration of p4 or p4m, combined with equation 4 which de-
scribes the transformation of a function on a group.

Finally, we define the involution of a feature map, which
will appear in section 6.1 when we study the behavior of
the G-convolution, and which also appears in the gradient
of the G-convolution. We have:

f∗(g) = f(g−1) (6)

For Z2 feature maps the involution is just a point reflec-
tion, but for G-feature maps the meaning depends on the
structure of G. In all cases, f∗∗ = f .

5. Equivariance properties of CNNs
In this section we recall the definitions of the convolution
and correlation operations used in conventional CNNs, and
show that these operations are equivariant to translations
but not to other transformations such as rotation. This is
certainly well known and easy to see by mental visualiza-
tion, but deriving it explicitly will make it easier to follow
the derivation of group equivariance of the group convolu-
tion defined in the next section.

At each layer l, a regular convnet takes as input a stack of
feature maps f : Z2 → RKl

and convolves or correlates it
with a set ofK l+1 filters ψi : Z2 → RKl

:

[f ∗ ψi](x) =
∑

y∈Z2

Kl

∑

k=1

fk(y)ψ
i
k(x − y)

[f ⋆ ψi](x) =
∑

y∈Z2

Kl

∑

k=1

fk(y)ψ
i
k(y − x)

(7)

If one employs convolution (∗) in the forward pass, the cor-
relation (⋆) will appear in the backward pass when comput-
ing gradients, and vice versa. We will use the correlation in
the forward pass, and refer generically to both operations
as “convolution”.

Using the substitution y → y+ t, and leaving out the sum-
mation over feature maps for clarity, we see that a transla-

Permutation Invariant Functions

Definition 2.3. Let X = {1, . . . ,M} be an index set of nodes in a layer. We say an Sn-action on
X is a union of permutations if X =

⊔
Xi, where each Xi has n elements and Sn acts on Xi by

permutation.

Theorem 2.3. Let N be a deep neural network of the invariant model consisting of the equivariant
part of depth d and width M and the preinvariant part of depth e and width N (resp. the equivariant
model of depth d and width M). Assume that the action is a union of permutations on nodes in each
layers. Then, the number of free parameters in this model is bounded by (2dM2d/n2d) ·N2e (resp.

2dM2d/n2d).

Note that the number of free parameters in the usual model is M2d. Hence, this theorem implies
that the free parameters of the invariant/equivariant models are exponentially fewer than the ones
of the usual models.

3 Invariant case

In this section, we discuss the invariant case. An important result about the structures of invariant
functions is that these have exact representations as follows:

Theorem 3.1 ([28] Kolmogorov-Arnold’s representation theorem for permutation actions). Let K ⊂
Rn be a compact set. Then, any continuous Sn-invariant function f : K "−→ R can be represented
as

f(x1, . . . , xn) = ρ

(
n∑

i=1

φ(xi)

)

(1)

for some continuous function ρ : Rn+1 → R. Here, φ : R → Rn+1;x "→ (1, x, x2, . . . , xn)⊤.

By this theorem, we prove Theorem 2.1, i.e., an invariant version of universal approximation theo-
rem.
Proof of Theorem 2.1. We may assume N = 1. In fact, since we consider the L∞-norm, if all
components of ∥f − RN ∥ is bounded by ϵ, then ∥f − RN ∥∞ ≤ ϵ holds. By Theorem 3.1, we
have f(x1, . . . , xn) = ρ (

∑n
i=1 φ(xi)). Then, φ and Σ are concrete maps. Hence, we can write

them down by a feed forward network. We give Sn-actions on this network. The Sn-action on the
input layer is permutation. Then, since Σ is apparently an invariant linear function, it remains to
approximate φ and ρ. Since φ depends on a single variable, we can extend Sn-action on arbitrary
approximations. By [25], we can approximate φ and ρ by shallow networks. Hence, we have
deep neural network N which has two hidden layers and the width is not bounded. By [13], we
can respectively approximate each of φ and ρ by some neural networks whose width are bounded
by n + 2 and the depth is not bounded. Hence, we have deep neural network N whose width is
bounded by n(n+ 2) and the depth is not bounded. The detail of the proof is in Appendix B.

4 Equivariant case

In this section, we prove Theorem 2.2, namely, the equivariant version of the universal approxima-
tion theorem. More concretely, we construct an Sn-invariant deep neural network approximating
the given Sn-equivariant function. To achieve this, we divide the proof to four steps as follows:

1. By Proposition 4.1 proved below, we reduce the argument on Sn-equivariant map F to the
one of Stab(1)-invariant function f .

2. Modifying Theorem 3.1, we have a representation of Stab(1)-invariant function f .

3. Using the above representation, we have a Stab(1)-invariant deep neural net which approx-
imates f and construct a deep neural network approximating F .

4. We introduce a certain action of Sn on (Rn)n which appears the first hidden layer naturally
and show the Sn-equivariance between the input layer and the first hidden layer.

We first investigate step 1. We recall that, during this section, we only consider the action of Sn on
Rn induced from permutation σ · (x1, . . . , xn)⊤ = (xσ−1(1), . . . , xσ−1(n))

⊤. We define the action
of Stab(1) on Rn by regarding Stab(1) as a subgroup of Sn. Then, the following shows a relation
between Sn-equivariance and Stab(1)-invariance.

6

from Rdi to Rdi+1 defined by Zi(x) = ReLU(Wix), where Wi ∈ Rdi+1×di . In this case, di is
called the width of the i-th layer. The output of the deep neural networks is

Y (x) = ZH ◦ ZH−1 . . . Z2 ◦ Z1(x),

where H is called the depth of the deep neural network. We define the width of a deep neural
network as the maximum of the widths of all layers. Our models, which are generalization of
the models in [28], are defined by the invariant/equivariant property of Zi. Before defining the
invariant/equivariant models, we define the invariance/equivariance for functions.

Only two groups will be considered in this paper. The group Sn of permutations of n elements and
its subgroup Stabn(1) of the permutations fixing {1}, properly defined as follows:

Stabn(1) = Stab(1) = {σ ∈ Sn | σ · 1 = 1} .

Definition 2.1. Let G be a group and X and Y two sets. We assume that G acts on X (resp. Y) by
g · x (resp. g ∗ y) for g ∈ G and x ∈ X (resp. y ∈ Y) . We say that a map f : X → Y is

• G-invariant if f(g · x) = f(x) for any g ∈ G and any x ∈ X ,

• G-equivariant if f(g · x) = g ∗ f(x) for any g ∈ G and any x ∈ X .

When G = Sn and the actions are induced by permutation, we call G-invariant (resp. G-equivariant)
functions as permutation invariant (resp. permutation equivariant) functions.

We next consider an action of Sn on vector spaces over R, esspecially, each layers of deep neural
networks. We fix an action “·” of Sn on the set {1, 2, . . . , n}. Then, the left action “·” (we use same
symbol here) of Sn on Rn is induced by

σ · x = σ · (x1, x2, . . . , xn)
⊤ = (xσ−1·1, xσ−1·2, . . . , xσ−1·n)

⊤

for σ ∈ Sn and x = (x1, . . . , xn)⊤ ∈ Rn.

We define G-invariance and G-equivariance for deep neural networks. We can easily confirm that
the models in [28] satisfies these properties.

Definition 2.2. We say that a deep neural network is Sn-equivariant (resp. Sn-preinvariant) if there
are Sn-actions on each layer Rdi and the corresponding map Zi : Rdi → Rdi+1 is Sn-equivariant
(resp. Sn-invariant). We say that a deep neural network is Sn-invariant if there is a natural number
c ≤ H such that Sn-actions on each layer Rdi for 1 ≤ i ≤ c + 1 and the corresponding map
Zi : Rdi → Rdi+1 is Sn-equivariant for 1 ≤ i ≤ c− 1 and Zc : Rdc → Rdc+1 is Sn-preinvariant.

In this paper, we give three main theorems about invariant/equivariant networks. The first one is the
invariant version of universal approximation theorem.

Theorem 2.1 (Permutation invariant version of universal approximation theorem). Let K be a com-
pact set in Rn which is stable for the corresponing Sn action in Rn . Then, for any f : K → RN

which is continuous and permutation invariant and for any ϵ > 0, there is an Sn-invariant ReLU
neural network N such that its represented function RN satisfies ∥f − RN ∥∞ ≤ ϵ. Furthermore,
we can take N as either of the following:

• N has two hidden layers and the width is not bounded, or

• The width is of N is bounded above by n(n+ 2) and the depth is not bounded.

Diagram 1 illustrates the Sn-invariant ReLU neural network appeared in Theorem 2.1. [22] also
showed this theorem. However, we give the bound of the width and the depth. The proof of The-
orem 2.1 is constructive. Firstly, we use the Kolmogorov-Arnold representation theorem to give
a presentation f = ρ (

∑n
i=1 φ(xi)), where f is the objective function. Since φ(x) has only one

variable, we line up the copies of the network which approximates φ(x). Then, by combining Σ and
the network which approximates ρ, we obtain the network which approximates f . By the theorem
of [13], we obtain the bound of the width and the depth.

The second main theorem is the equivariant version.

Theorem 2.2 (Permutation equivariant version of universal approximation theorem). Let K be a
compact set in Rn. Then for any continuous function f : K → Rn which is permutation equivariant

4

ρ
∑...

...
...

φxn

φx2

φx1

Diagram 1: A neural network approximating Sn-invariant function f . In blue: the inputs, in red: the
output, in green: ρ and φ who have to be learned.

ρ
∑...

...
...

φ

φ

id

...

id

...

ρ
∑...

...
...

φ

φ

id

...

id

...

x1

xn

...

Diagram 2: A neural network approximating Sn-equivariant map F

and for any ϵ > 0, there is an Sn-equivariant ReLU neural network N such that its represented
function RN satisfies ∥f −RN ∥∞ ≤ ϵ. Furthermore, we can take N as either of the following:

• N has two hidden layers and the width is not bounded, or

• The width is of N is bounded above by n3 and the depth is not bounded.

Although invariant versions are proved by [22] and [27], the equivariant version of universal approxi-
mation theorem for Sn is first in the literature. Our strategy for the proof is the following: At first, we
establish the correspondence between Stab(1)-invariant functions and Sn-equivariant functions. By
this correspondence, we take Stab(1)-invariant function f corresponding to the objective function
F . By Theorem 2.1, we can approximate f by a Stab(1)-invariant network N . Using N , we con-
struct the Sn-equivariant network which approximates F . Diagram 2 illustrates the Sn-equivariant
ReLU neural network appeared in Theorem 2.2.
We have two universal approximation theorems. Hence, if the free parameters of the invari-
ant/equivariant models are fewer than the ones of the usual models, we have a guarantee for using
the invariant/equivariant models. The following definition illustrates the swapping of nodes.

5

Permutation Equivariant Functions

ρ
∑...

...
...

φxn

φx2

idx1

id

Diagram 3: A neural network approximating the Stab(1)-invariant function f

Proposition 4.1. A map F : Rn → Rn is Sn-equivariant if and only if there is a Stab(1)-invariant

function f : Rn → R satisfying F = (f, f ◦ (1 2), . . . , f ◦ (1 n))⊤. Here, (1 i) ∈ Sn is the
transposition between 1 and i.

The proof of this proposition is based on the coset decomposition of Sn by Stab(1) as Sn =⊔n
i=1 Stab(1)(1 i) and the fact that transposition (1 i), i = 1, . . . , n generate Sn. Using these

facts and some calculation, it is not hard to show the equivalence. The detail of the proof is in
Appendix C.

Next, we consider step 2. The stabilizer subgroup Stabn(1) is isomorphic to Sn−1 as a group by
Lemma. Hence, we can regard the Stab(1)-invariant function f : Rn → R as an Sn−1-invariant
function. This point of view allows us to apply Theorem 3.1 to f . Hence, we have the following
representation theorem of Stab(1)-invariant functions as a corollary of Theorem 3.1.
Corollary 4.1 (Representation of Stab(1)-invariant function). Let K ⊂ Rn be a compact set, let
f : K −→ R be a continuous and Stab(1)-invariant function. Then, f(x) can be represented as

f(x) = f(x1, . . . , xn) = ρ

(

x1,
n∑

i=2

φ(xi)

)

,

for some continuous function ρ : Rn+1 −→ R. Here, φ : R → Rn is similar as in Theorem 3.1.

By this corollary, we can represent the Stab(1)-invariant function f : Rn &−→ R as f = ρ ◦ L ◦ Φ,
where Φ : Rn → R× (Rn)n−1 and L : R× (Rn)n−1 → R× Rn are

Φ(x1, . . . , xn) = (x1,φ(x2), . . . ,φ(xn)), L(x, (y1, . . . ,yn−1)) =

(

x,
n−1∑

i=1

yi

)

.

Then, we consider step 3, namely, the existence of Stab(1)-invariant deep neural network approx-
imating the function f . After that, using this approximator, we construct a deep neural network
approximating Sn-equivariant function F . By a slight modification of the invariant version of The-
orem 2.1 for Stab(1)-invariant case, there exists a sequence of deep neural networks {Am}m (resp.
{Bm}m) which converges to Φ (resp. ρ) uniformly. Then, the sequence of deep neural networks
{Bm ◦ L ◦Am}m converges to f = ρ ◦ L ◦ Φ uniformly.

Now, f can be approached by the following deep neural network by replacing ρ and Φ by universal
approximators as Diagram 3. We remark that the left part (the part of before taking sum) of this
deep neural network is naturally equivariant for the action of Stab(1). For an Sn-equivariant map
F : Rn → Rn with the natural action, by Proposition 4.1, there is a unique Stab(1)-invariant
function f such that F (x)i = (f ◦ (1 i))(x). Here, F (x) = (F (x)1, . . . , F (x)n)⊤ and we regard
any element of Sn as a map from Rn to Rn. By the argument in this section, we can approximate
f by the previous deep neural network {Bm ◦ L ◦ Am}m. Substituting Bm ◦ L ◦ Am for f , we
construct a deep neural network approximating F as Diagram 2.

The represented function of this neural network of Fi is Bm ◦ L ◦ Am ◦ (1 i). The map F splits
into two parts, the part of transpositions and part of (f, f, . . . , f)⊤. On the deep neural network

7

ρ
∑...

...
...

φxn

φx2

idx1

id

Diagram 3: A neural network approximating the Stab(1)-invariant function f

Proposition 4.1. A map F : Rn → Rn is Sn-equivariant if and only if there is a Stab(1)-invariant

function f : Rn → R satisfying F = (f, f ◦ (1 2), . . . , f ◦ (1 n))⊤. Here, (1 i) ∈ Sn is the
transposition between 1 and i.

The proof of this proposition is based on the coset decomposition of Sn by Stab(1) as Sn =⊔n
i=1 Stab(1)(1 i) and the fact that transposition (1 i), i = 1, . . . , n generate Sn. Using these

facts and some calculation, it is not hard to show the equivalence. The detail of the proof is in
Appendix C.

Next, we consider step 2. The stabilizer subgroup Stabn(1) is isomorphic to Sn−1 as a group by
Lemma. Hence, we can regard the Stab(1)-invariant function f : Rn → R as an Sn−1-invariant
function. This point of view allows us to apply Theorem 3.1 to f . Hence, we have the following
representation theorem of Stab(1)-invariant functions as a corollary of Theorem 3.1.
Corollary 4.1 (Representation of Stab(1)-invariant function). Let K ⊂ Rn be a compact set, let
f : K −→ R be a continuous and Stab(1)-invariant function. Then, f(x) can be represented as

f(x) = f(x1, . . . , xn) = ρ

(

x1,
n∑

i=2

φ(xi)

)

,

for some continuous function ρ : Rn+1 −→ R. Here, φ : R → Rn is similar as in Theorem 3.1.

By this corollary, we can represent the Stab(1)-invariant function f : Rn &−→ R as f = ρ ◦ L ◦ Φ,
where Φ : Rn → R× (Rn)n−1 and L : R× (Rn)n−1 → R× Rn are

Φ(x1, . . . , xn) = (x1,φ(x2), . . . ,φ(xn)), L(x, (y1, . . . ,yn−1)) =

(

x,
n−1∑

i=1

yi

)

.

Then, we consider step 3, namely, the existence of Stab(1)-invariant deep neural network approx-
imating the function f . After that, using this approximator, we construct a deep neural network
approximating Sn-equivariant function F . By a slight modification of the invariant version of The-
orem 2.1 for Stab(1)-invariant case, there exists a sequence of deep neural networks {Am}m (resp.
{Bm}m) which converges to Φ (resp. ρ) uniformly. Then, the sequence of deep neural networks
{Bm ◦ L ◦Am}m converges to f = ρ ◦ L ◦ Φ uniformly.

Now, f can be approached by the following deep neural network by replacing ρ and Φ by universal
approximators as Diagram 3. We remark that the left part (the part of before taking sum) of this
deep neural network is naturally equivariant for the action of Stab(1). For an Sn-equivariant map
F : Rn → Rn with the natural action, by Proposition 4.1, there is a unique Stab(1)-invariant
function f such that F (x)i = (f ◦ (1 i))(x). Here, F (x) = (F (x)1, . . . , F (x)n)⊤ and we regard
any element of Sn as a map from Rn to Rn. By the argument in this section, we can approximate
f by the previous deep neural network {Bm ◦ L ◦ Am}m. Substituting Bm ◦ L ◦ Am for f , we
construct a deep neural network approximating F as Diagram 2.

The represented function of this neural network of Fi is Bm ◦ L ◦ Am ◦ (1 i). The map F splits
into two parts, the part of transpositions and part of (f, f, . . . , f)⊤. On the deep neural network

7

ρ
∑...

...
...

φxn

φx2

idx1

id

Diagram 3: A neural network approximating the Stab(1)-invariant function f

Proposition 4.1. A map F : Rn → Rn is Sn-equivariant if and only if there is a Stab(1)-invariant

function f : Rn → R satisfying F = (f, f ◦ (1 2), . . . , f ◦ (1 n))⊤. Here, (1 i) ∈ Sn is the
transposition between 1 and i.

The proof of this proposition is based on the coset decomposition of Sn by Stab(1) as Sn =⊔n
i=1 Stab(1)(1 i) and the fact that transposition (1 i), i = 1, . . . , n generate Sn. Using these

facts and some calculation, it is not hard to show the equivalence. The detail of the proof is in
Appendix C.

Next, we consider step 2. The stabilizer subgroup Stabn(1) is isomorphic to Sn−1 as a group by
Lemma. Hence, we can regard the Stab(1)-invariant function f : Rn → R as an Sn−1-invariant
function. This point of view allows us to apply Theorem 3.1 to f . Hence, we have the following
representation theorem of Stab(1)-invariant functions as a corollary of Theorem 3.1.
Corollary 4.1 (Representation of Stab(1)-invariant function). Let K ⊂ Rn be a compact set, let
f : K −→ R be a continuous and Stab(1)-invariant function. Then, f(x) can be represented as

f(x) = f(x1, . . . , xn) = ρ

(

x1,
n∑

i=2

φ(xi)

)

,

for some continuous function ρ : Rn+1 −→ R. Here, φ : R → Rn is similar as in Theorem 3.1.

By this corollary, we can represent the Stab(1)-invariant function f : Rn &−→ R as f = ρ ◦ L ◦ Φ,
where Φ : Rn → R× (Rn)n−1 and L : R× (Rn)n−1 → R× Rn are

Φ(x1, . . . , xn) = (x1,φ(x2), . . . ,φ(xn)), L(x, (y1, . . . ,yn−1)) =

(

x,
n−1∑

i=1

yi

)

.

Then, we consider step 3, namely, the existence of Stab(1)-invariant deep neural network approx-
imating the function f . After that, using this approximator, we construct a deep neural network
approximating Sn-equivariant function F . By a slight modification of the invariant version of The-
orem 2.1 for Stab(1)-invariant case, there exists a sequence of deep neural networks {Am}m (resp.
{Bm}m) which converges to Φ (resp. ρ) uniformly. Then, the sequence of deep neural networks
{Bm ◦ L ◦Am}m converges to f = ρ ◦ L ◦ Φ uniformly.

Now, f can be approached by the following deep neural network by replacing ρ and Φ by universal
approximators as Diagram 3. We remark that the left part (the part of before taking sum) of this
deep neural network is naturally equivariant for the action of Stab(1). For an Sn-equivariant map
F : Rn → Rn with the natural action, by Proposition 4.1, there is a unique Stab(1)-invariant
function f such that F (x)i = (f ◦ (1 i))(x). Here, F (x) = (F (x)1, . . . , F (x)n)⊤ and we regard
any element of Sn as a map from Rn to Rn. By the argument in this section, we can approximate
f by the previous deep neural network {Bm ◦ L ◦ Am}m. Substituting Bm ◦ L ◦ Am for f , we
construct a deep neural network approximating F as Diagram 2.

The represented function of this neural network of Fi is Bm ◦ L ◦ Am ◦ (1 i). The map F splits
into two parts, the part of transpositions and part of (f, f, . . . , f)⊤. On the deep neural network

7

ρ
∑...

...
...

φxn

φx2

φx1

Diagram 1: A neural network approximating Sn-invariant function f . In blue: the inputs, in red: the
output, in green: ρ and φ who have to be learned.

ρ
∑...

...
...

φ

φ

id

...

id

...

ρ
∑...

...
...

φ

φ

id

...

id

...

x1

xn

...

Diagram 2: A neural network approximating Sn-equivariant map F

and for any ϵ > 0, there is an Sn-equivariant ReLU neural network N such that its represented
function RN satisfies ∥f −RN ∥∞ ≤ ϵ. Furthermore, we can take N as either of the following:

• N has two hidden layers and the width is not bounded, or

• The width is of N is bounded above by n3 and the depth is not bounded.

Although invariant versions are proved by [22] and [27], the equivariant version of universal approxi-
mation theorem for Sn is first in the literature. Our strategy for the proof is the following: At first, we
establish the correspondence between Stab(1)-invariant functions and Sn-equivariant functions. By
this correspondence, we take Stab(1)-invariant function f corresponding to the objective function
F . By Theorem 2.1, we can approximate f by a Stab(1)-invariant network N . Using N , we con-
struct the Sn-equivariant network which approximates F . Diagram 2 illustrates the Sn-equivariant
ReLU neural network appeared in Theorem 2.2.
We have two universal approximation theorems. Hence, if the free parameters of the invari-
ant/equivariant models are fewer than the ones of the usual models, we have a guarantee for using
the invariant/equivariant models. The following definition illustrates the swapping of nodes.

5

Thank you!

