

Acknowledgement

A following-up course at HKUST: https://deeplearning-math.github.io/

High Dimensional Natural Image Classification

- High-dimensional $x=(x(1), \ldots, x(d)) \in \mathbb{R}^{d}$:
- Classification: estimate a class label $f(x)$ given n sample values $\left\{x_{i}, y_{i}=f\left(x_{i}\right)\right\}_{i \leq n}$

Image Classification $d=10^{6}$

Huge variability inside classes

Find invariants

Curse of Dimensionality

- Analysis in high dimension: $x \in \mathbb{R}^{d}$ with $d \geq 10^{6}$.
- Points are far away in high dimensions d :
- 10 points cover $[0,1]$ at a distance 10^{-1}
- 100 points for $[0,1]^{2}$
- need 10^{d} points over $[0,1]^{d}$

impossible if $d \geq 20$
$\lim _{d \rightarrow \infty} \frac{\text { volume sphere of radius } \mathrm{r}}{\text { volume }[0, r]^{d}}=0$

points are concentrated in 2^{d} corners!
\Rightarrow Euclidean metrics are not appropriate on raw data.

A Blessing from Physical world? Multiscale "compositional" sparsity

- Variables $x(u)$ indexed by a low-dimensional u : time/space... pixels in images, particles in physics, words in text...
- Mutliscale interactions of d variables:

From d^{2} interactions to $O\left(\log ^{2} d\right)$ multiscale interactions.

- Multiscale analysis: wavelets on groups of symmetries. hierarchical architecture.

Learning as an Approximation

- To estimate $f(x)$ from a sampling $\left\{x_{i}, y_{i}=f\left(x_{i}\right)\right\}_{i \leq M}$ we must build an M-parameter approximation f_{M} of f.
- Precise sparse approximation requires some "regularity".
- For binary classification $f(x)=\left\{\begin{array}{cl}1 & \text { if } x \in \Omega \\ -1 & \text { if } x \notin \Omega\end{array}\right.$

$$
f(x)=\operatorname{sign}(\tilde{f}(x))
$$

where \tilde{f} is potentially regular.

- What type of regularity ? How to compute f_{M} ?

C 1 Hidden Layer Neural Networks_

One-hidden layer neural network: ridge functions $\rho\left(x \cdot w_{n}+b_{n}\right)$

M

$f_{M}(x)=\sum_{n=1}^{M} \alpha_{n} \rho\left(w_{n} \cdot x+b_{n}\right)$ $\left\{w_{k, k}\right\}_{k, n}$ and $\left\{\alpha_{n}\right\}_{n}$ are learned non-linear approximation.

Cybenko, Hornik, Stinchcombe, White
Theorem: For "resonnable" bounded $\rho(u)$ and appropriate choices of $w_{n, k}$ and α_{n} :

$$
\forall f \in \mathbb{L}^{2}[0,1]^{d} \quad \lim _{M \rightarrow \infty}\left\|f-f_{M}\right\|=0
$$

No big deal: curse of dimensionality still there.

One-hidden layer neural network:

Fourier series: $\rho(u)=e^{i u}$

$$
f_{M}(x)=\sum_{n=1}^{M} \alpha_{n} e^{i w_{n} \cdot x}
$$

For nearly all ρ : essentially same approximation results.

Piecewise Linear Approximation

- Piecewise linear approximation:

If f is Lipschitz: $\left|f(x)-f\left(x^{\prime}\right)\right| \leq C\left|x-x^{\prime}\right|$

$$
\Rightarrow \quad|f(x)-\tilde{f}(x)| \leq C \epsilon
$$

Need $M=\epsilon^{-1}$ points to cover $[0,1]$ at a distance ϵ

$$
\Rightarrow\left\|f-f_{M}\right\| \leq C M^{-1}
$$

- Piecewise linear ridge approximation: $x \in[0,1]^{d}$

$$
\tilde{f}(x)=\sum_{n} a_{n} \rho\left(w_{n} \cdot x-n \epsilon\right)
$$

If f is Lipschitz: $\left|f(x)-f\left(x^{\prime}\right)\right| \leq C\left\|x-x^{\prime}\right\|$ Sampling at a distance ϵ :

$$
\Rightarrow \quad|f(x)-\tilde{f}(x)| \leq C \epsilon
$$

need $M=\epsilon^{-d}$ points to cover $[0,1]^{d}$ at a distance ϵ

$$
\Rightarrow\left\|f-f_{M}\right\| \leq C M^{-1 / d}
$$

Curse of dimensionality!

- What prior condition makes learning possible ?
- Approximation of regular functions in $\mathbf{C}^{s}[0,1]^{d}$:
$\forall x, u \quad\left|f(x)-p_{u}(x)\right| \leq C|x-u|^{s}$ with $p_{u}(x)$ polynomial

Need $M^{-d / s}$ point to cover $[0,1]^{d}$ at a distance $\epsilon^{1 / s}$

$$
\Rightarrow\left\|f-f_{M}\right\| \leq C M^{-s / d}
$$

- Can not do better in $\mathbf{C}^{\mathbf{s}}[0,1]^{d}$, not good because $s \ll d$. Failure of classical approximation theory.

Kernel Learning

Change of variable $\Phi(x)=\left\{\phi_{k}(x)\right\}_{k \leq d^{\prime}}$
to nearly linearize $f(x)$, which is approximated by:

$$
\tilde{f}(x)=\underset{\substack{\text { 1D projection }} \underset{k}{\langle\Phi}(x), w\rangle}{ }=\sum_{k} w_{k} \phi_{k}(x) .
$$

- How and when is possible to find such a Φ ?
- What "regularity" of f is needed ?

Proposition: There exists a hyperplane separating any two subsets of N points $\left\{\Phi x_{i}\right\}_{i}$ in dimension $d^{\prime}>N+1$ if $\left\{\Phi x_{i}\right\}_{i}$ are not in an affine subspace of dimension $<N$.
\Rightarrow Choose Φ increasing dimensionality !
Problem: generalisation, overfitting.
Example: Gaussian kernel $\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle=\exp \left(\frac{-\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)$

$$
\Phi(x) \text { is of dimension } d^{\prime}=\infty
$$

If σ is small, nearest neighbor classifier type:

Spirit in Fisher's Linear Discriminant Analysis

Reduction of Dimensionality

- Discriminative change of variable $\Phi(x)$:

$$
\begin{aligned}
& \Phi(x) \neq \Phi\left(x^{\prime}\right) \text { if } f(x) \neq f\left(x^{\prime}\right) \\
& \Rightarrow \quad \exists \tilde{f} \text { with } f(x)=\tilde{f}(\Phi(x))
\end{aligned}
$$

- If \tilde{f} is Lipschitz: $\left|\tilde{f}(z)-\tilde{f}\left(z^{\prime}\right)\right| \leq C\left\|z-z^{\prime}\right\|$

$$
z=\Phi(x) \Leftrightarrow\left|f(x)-f\left(x^{\prime}\right)\right| \leq C\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\|
$$

Discriminative: $\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\| \geq C^{-1}\left|f(x)-f\left(x^{\prime}\right)\right|$

- For $x \in \Omega$, if $\Phi(\Omega)$ is bounded and a low dimension d^{\prime}

$$
\Rightarrow\left\|f-f_{M}\right\| \leq C M^{-1 / d^{\prime}}
$$

- The revival of neural networks: Y. LeCun

Optimize L_{j} with architecture constraints: over 10^{9} parameters Exceptional results for images, speech, language, bio-data...

用 FNe Deep Convolutional Networks

$\square x_{J}\left(u, k_{J}\right)$

- L_{j} is a linear combination of convolutions and subsampling:

$$
x_{j}\left(u, k_{j}\right)=\rho\left(\sum_{\substack{k \\ \text { sum across channels }}} x_{j-1}(\cdot, k) \star h_{k_{j}, k}(u)\right)
$$

- ρ is contractive: $\left|\rho(u)-\rho\left(u^{\prime}\right)\right| \leq\left|u-u^{\prime}\right|$

$$
\rho(u)=\max (u, 0) \text { or } \rho(u)=|u|
$$

$x_{J}\left(u, k_{J}\right)$

- Why convolutions? Translation covariance.
- Why no overfitting ? Contractions, dimension reduction
- Why hierarchical cascade ?
- Why introducing non-linearities?
- How and what to linearise?
- What are the roles of the multiple channels in each layer?

Classes

$$
\begin{gathered}
\text { Level sets of } f(x) \\
\Omega_{t}=\{x: f(x)=t\}
\end{gathered}
$$

If level sets (classes) are parallel to a linear space then variables are eliminated by linear projections: invariants.

ENS Linearise for Dimensionality Reduction-

Classes
Level sets of $f(x)$ $\Omega_{t}=\{x: f(x)=t\}$

- If level sets Ω_{t} are not parallel to a linear space
- Linearise them with a change of variable $\Phi(x)$
- Then reduce dimension with linear projections
- Difficult because Ω_{t} are high-dimensional, irregular, known on few samples.

Lins Level Set Geometry: Symmetries

- Curse of dimensionality \Rightarrow not local but global geometry

Level sets: classes, characterised by their global symmetries.

- A symmetry is an operator g which preserves level sets:

$$
\forall x \quad, \quad f(g \cdot x)=f(x): \text { global }
$$

If g_{1} and g_{2} are symmetries then $g_{1} \cdot g_{2}$ is also a symmetry

$$
f\left(g_{1} \cdot g_{2} \cdot x\right)=f\left(g_{2} \cdot x\right)=f(x)
$$

Groups of symmetries

- $G=\{$ all symmetries $\}$ is a group: unknown

$$
\begin{array}{lc}
& \forall\left(g, g^{\prime}\right) \in G^{2} \Rightarrow g \cdot g^{\prime} \in G \\
\text { Inverse: } & \forall g \in G, g^{-1} \in G
\end{array}
$$

Associative: $\quad\left(g \cdot g^{\prime}\right) \cdot g^{\prime \prime}=g \cdot\left(g^{\prime} \cdot g^{\prime \prime}\right)$
If commutative $g \cdot g^{\prime}=g^{\prime} \cdot g$: Abelian group.

- Group of dimension n if it has n generators:

$$
g=g_{1}^{p_{1}} g_{2}^{p_{2}} \ldots g_{n}^{p_{n}}
$$

- Lie group: infinitely small generators (Lie Algebra)

Translation and Deformations

- Digit classification:
- Globally invariant to the translation group: small
- Locally invariant to small diffeomorphisms: huge group

Video of Philipp Scott Johnson

OR Rotation and Scaling Variability

- Rotation and deformations

$$
\text { Group: } S O(2) \times \operatorname{Diff}(S O(2))
$$

- Scaling and deformations

Group: $\mathbb{R} \times \operatorname{Diff}(\mathbb{R})$

ENS Linearize Symmetries

- A change of variable $\Phi(x)$ must linearize the orbits $\{g \cdot x\}_{g \in G}$

- Linearise symmetries with a change of variable $\Phi(x)$

- Lipschitz: $\forall x, g$: $\|\Phi(x)-\Phi(g \cdot x)\| \leq C\|g\|$

Translation and Deformations

- Digit classification:

- Globally invariant to the translation group
- Locally invariant to small diffeomorphisms

Linearize small diffeomorphisms: \Rightarrow Lipschitz regular

Video of Philipp Scott Johnson

Translations and Deformations

- Invariance to translations:

$$
g \cdot x(u)=x(u-c) \Rightarrow \Phi(g \cdot x)=\Phi(x)
$$

- Small diffeomorphisms: $g \cdot x(u)=x(u-\tau(u))$

Metric: $\|g\|=\|\nabla \tau\|_{\infty}$ maximum scaling
Linearisation by Lipschitz continuity

$$
\|\Phi(x)-\Phi(g . x)\| \leq C\|\nabla \tau\|_{\infty}
$$

- Discriminative change of variable:

$$
\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\| \geq C^{-1}\left|f(x)-f\left(x^{\prime}\right)\right|
$$

- Fourier transform $\hat{x}(\omega)=\int x(t) e^{-i \omega t} d t$

$$
x_{c}(t)=x(t-c) \Rightarrow \hat{x}_{c}(\omega)=e^{-i c \omega} \hat{x}(\omega)
$$

The modulus is invariant to translations:

$$
\Phi(x)=|\hat{x}|=\left|\hat{x}_{c}\right|
$$

- Instabilites to small deformations $x_{\tau}(t)=x(t-\tau(t))$:

$$
\left|\left|\hat{x}_{\tau}(\omega)\right|-|\hat{x}(\omega)|\right| \text { is big at high frequencies }
$$

$$
\Rightarrow \quad\left\||\hat{x}|-\left|\hat{x}_{\tau}\right|\right\| \gg\|\nabla \tau\|_{\infty}\|x\|
$$

- Complex wavelet: $\psi(t)=\psi^{a}(t)+i \psi^{b}(t)$
- Dilated: $\psi_{\lambda}(t)=2^{-j} \psi\left(2^{-j} t\right)$ with $\lambda=2^{-j}$.

- Wavelet transform: $x \star \psi_{\lambda}(t)=\int x(u) \psi_{\lambda}(t-u) d u$

$$
W x=\binom{x \star \phi(t)}{x \star \psi_{\lambda}(t)}_{t, \lambda}
$$

Unitary: $\|W x\|^{2}=\|x\|^{2}$.

- Complex wavelet: $\psi(t)=\psi^{a}(t)+i \psi^{b}(t), t=\left(t_{1}, t_{2}\right)$ rotated and dilated: $\psi_{\lambda}(t)=2^{-j} \psi\left(2^{-j} r t\right)$ with $\lambda=\left(2^{j}, r\right)$

- Wavelet transform: $W x=\binom{x \star \phi(t)}{x \star \psi_{\lambda}(t)}_{t, \lambda}$

Unitary: $\|W x\|^{2}=\|x\|^{2}$.

- Wavelets are uniformly stable to deformations:
if $\psi_{\lambda, \tau}(t)=\psi_{\lambda}(t-\tau(t))$ then

$$
\left\|\psi_{\lambda}-\psi_{\lambda, \tau}\right\| \leq C \sup _{t}|\nabla \tau(t)|
$$

- Wavelets separate multiscale information.
- Wavelets provide sparse representations.

Why Wavelets?

- Wavelets (complex band limited) are uniformly stable to deformations if $\psi_{\lambda, \tau}(t)=\psi_{\lambda}(t-\tau(t))$ then

$$
\left\|\psi_{\lambda}-\psi_{\lambda, \tau}\right\| \leq C \sup _{t}|\nabla \tau(t)|
$$

- Wavelets are sparse representations of functions
- Wavelets separate multiscale information
- Wavelets can be locally translation invariant

Sparsity of Wavelet Transforms

Singularity is preserved in multiscale transform

Singular Functions

$\left|x \star \psi_{\lambda_{1}}(t)\right|=\left|\int x(u) \psi_{\lambda_{1}}(t-u) d u\right|$

$\left|x \star \psi_{\lambda_{1}}(t)\right|$
econd wavelet transform modulus

$$
\left|W_{2}\right|\left|x \star \psi_{\lambda_{1}}\right|=\binom{\left|x \star \psi_{\lambda_{1}}\right| \star \phi_{2^{J}}(t)}{\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}(t)\right|}_{\lambda_{2}}
$$

(2)Wavelet Translation Invariance

- The modulus $\left|x \star \psi_{\lambda_{1}}\right|$ is a regular envelop
(1) Wavelet Translation Invariance-

- The modulus $\left|x \star \psi_{\lambda_{1}}\right|$ is a regular envelop
- The average $\left|x \star \psi_{\lambda_{1}}\right| \star \phi(t)$ is invariant to small translations relatively to the support of ϕ.

- The modulus $\left|x \star \psi_{\lambda_{1}}\right|$ is a regular envelop
- The average $\left|x \star \psi_{\lambda_{1}}\right| \star \phi(t)$ is invariant to small translations relatively to the support of ϕ.
- Full translation invariance at the limit:

$$
\lim _{\phi \rightarrow 1}\left|x \star \psi_{\lambda_{1}}\right| \star \phi(t)=\int\left|x \star \psi_{\lambda_{1}}(u)\right| d u=\left\|x \star \psi_{\lambda_{1}}\right\|_{1}
$$

but few invariants.

侯 Recovering Lost Information

- The high frequencies of $\left|x \star \psi_{\lambda_{1}}\right|$ are in wavelet coefficients:

$$
W\left|x \star \psi_{\lambda_{1}}\right|=\binom{\left|x \star \psi_{\lambda_{1}}\right| \star \phi(t)}{\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}(t)}_{t, \lambda_{2}}
$$

- Translation invariance by time averaging the amplitude:

$$
\forall \lambda_{1}, \lambda_{2}, \quad| | x \star \psi_{\lambda_{1}}\left|\star \psi_{\lambda_{2}}\right| \star \phi(t)
$$

Contraction

$$
W x=\binom{x \star \phi(t)}{x \star \psi_{\lambda}(t)}_{t, \lambda} \quad \text { is linear and }\|W x\|=\|x\|
$$

$$
\rho(u)=|u|
$$

$$
|W| x=\binom{x \star \phi(t)}{\left|x \star \psi_{\lambda}(t)\right|}_{t, \lambda} \quad \text { is non-linear }
$$

- it is contractive $\||W| x-|W| y\| \leq\|x-y\|$

$$
\text { because for }(a, b) \in \mathbb{C}^{2}| | a|-|b|| \leq|a-b|
$$

- it preserves the norm $\||W| x\|=\|x\|$

Wavelet Scattering Network

- Cascade of contractive operators

$$
\left\|\left|W_{k}\right| x-\left|W_{k}\right| x^{\prime}\right\| \leq\left\|x-x^{\prime}\right\| \quad \text { with } \quad\left\|\left|W_{k}\right| x\right\|=\|x\|
$$

Stability of Wavelet Scattering Transform

Scattering Properties

$$
S x=\left(\begin{array}{c}
x \star \phi(u) \\
\left|x \star \psi_{\lambda_{1}}\right| \star \phi(u) \\
\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \phi(u) \\
\left|\left|x \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}} \mid \star \phi(u) \\
\cdots
\end{array}\right)_{u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots}
$$

Theorem: For appropriate wavelets, a scattering is
contractive $\|S x-S y\| \leq\|x-y\|$
preserves norms $\|S x\|=\|x\|$
stable to deformations $x_{\tau}(t)=x(t-\tau(t))$

$$
\left\|S x-S x_{\tau}\right\| \leq C \sup _{t}|\nabla \tau(t)|\|x\|
$$

\Rightarrow linear discriminative classification from $\Phi x=S x$

Summary: Wavelet Scattering Ne†

- Architechture:
- Convolutional filters: band-limited wavelets
- Nonlinear activation: modulus (Lipschitz)
- Pooling: L1 norm as averaging
- Properties:
- A Multiscale Sparse Representation
- Norm Preservation (Parseval's identity):

$$
\|S x\|=\|x\|
$$

- Contraction:

$$
\|S x-S y\| \leq\|x-y\|
$$

$$
S x=\left(\begin{array}{c}
x \star \phi(u) \\
\left|x \star \psi_{\lambda_{1}}\right| \neq \phi(u) \\
\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \phi(u) \\
\left|\left|x \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}} \mid \star \phi(u)
\end{array}\right)
$$

$u, \lambda_{1}, \lambda_{2}, \lambda_{3}$,

Scattering Networks

Stability of scattering representations

- Non-expansive mapping

$$
\left\|S_{J} x-S_{J} y\right\| \leq\|x-y\|
$$

- Deformation insensitivity

$$
D_{\tau} x(u)=x(u-\tau(u)), \quad\left\|S_{J} D_{\tau} x-S_{J} x\right\| \leq C(\tau, J)\|x\|
$$

Thus no overfitting!

Group Invariants/Stability

- Translation Invariance:
- The average $\left|x \star \psi_{\lambda_{1}}\right| \star \phi(t)$ is invariant to small translations relatively to the support of ϕ.
- Full translation invariance at the limit:

$$
\lim _{\phi \rightarrow 1}\left|x \star \psi_{\lambda_{1}}\right| \star \phi(t)=\int\left|x \star \psi_{\lambda_{1}}(u)\right| d u=\left\|x \star \psi_{\lambda_{1}}\right\|_{1}
$$

- Stable Small Deformations:

$$
\begin{aligned}
& \text { stable to deformations } x_{\tau}(t)=x(t-\tau(t)) \\
& \qquad\left\|S x-S x_{\tau}\right\| \leq C \sup _{t}|\nabla \tau(t)|\|x\|
\end{aligned}
$$

Applications and extensions:

- Invertibility/completeness of representation [Waldspurger et al. '12]
- Extension to signals on graphs [Chen et al. '14] [Cheng et al. '16]
- With general family of filters [Bolcskei et al. '15] [Czaja et al. '15]

Feature Extraction

1F

- Each class X_{k} is represented by a scattering centroid $E\left(S X_{k}\right)$ Affine space model $\mathbf{A}_{k}=E\left(S X_{k}\right)+\mathbf{V}_{k}$. computed with PCA.

MNIST data basis: $\begin{array}{llllllllll}3 & 6 & 8 & 1 & 7 & 9 & 6 & 6 & 9 & 1 \\ 6 & 7 & 5 & 7 & 8 & 6 & 3 & 4 & 8 & 5 \\ 2 & 1 & 7 & 9 & 7 & 1 & 2 & 8 & 4 & 5 \\ 4 & 8 & 1 & 9 & 0 & 1 & 8 & 8 & 9 & 4\end{array}$

Other Invariants? Cross-channel pooling!

ENS Rotation and Scaling Invariance

Scattering classification errors

Training	Scat. Translation
20	20%

ENS Deep Convolutional Trees

L_{j} is composed of convolutions and subs samplings:

$$
x_{j}\left(u, k_{j}\right)=\rho\left(x_{j-1}(\cdot, k) \star h_{k_{j}, k}(u)\right)
$$

No channel communication: what limitations ?

- L_{j} is a linear combination of convolutions and subsampling:

$$
x_{j}\left(u, k_{j}\right)=\rho\left(\sum_{\substack{k \\ \text { sum across channels }}} x_{j-1}(\cdot, k) \star h_{k_{j}, k}(u)\right)
$$

What is the role of channel connections?
Linearize other symmetries beyond translations.

- Channel connections linearize other symmetries.

- Invariance to rotations are computed by convolutions along the rotation variable θ with wavelet filters.
\Rightarrow invariance to rigid mouvements.
- Roto-translation group $G=\left\{g=(r, t) \in S O(2) \times \mathbb{R}^{2}\right\}$

$$
(r, t) \cdot x(u)=x\left(r^{-1}(u-t)\right)
$$

- Averaging on $G: \quad X \circledast \bar{\phi}(g)=\int_{G} X\left(g^{\prime}\right) \bar{\phi}\left(g^{\prime-1} g\right) d g^{\prime}$
- Wavelet transform on $G: \quad W_{2} X=\binom{X \circledast \bar{\phi}(g)}{X \circledast \bar{\psi}_{\lambda_{2}}(g)}_{\lambda_{2}, g}$.

- Roto-translation group $G=\left\{g=(r, t) \in S O(2) \times \mathbb{R}^{2}\right\}$

$$
(r, t) \cdot x(u)=x\left(r^{-1}(u-t)\right)
$$

- Averaging on $G: \quad X \circledast \bar{\phi}(g)=\int_{G} X\left(g^{\prime}\right) \bar{\phi}\left(g^{\prime-1} g\right) d g^{\prime}$
- Wavelet transform on $G: \quad W_{2} X=\binom{X \circledast \bar{\phi}(g)}{X \circledast \bar{\psi}_{\lambda_{2}}(g)}_{\lambda_{2}, g}$.
translation
scalo-roto-translation
+ renormalization

Scattering classification errors

Training	Translation	Transl + Rotation	+ Scaling
20	20%	2%	$\mathbf{0 . 6} \%$

Wiatowski-Bolcskei' 15

- Scattering Net by Mallat et al. so far
- Wavelet Linear filter
- Nonlinear activation by modulus
- Average pooling
- Generalization by Wiatowski-Bolcskei' 15
- Filters as frames
- Lipschitz continuous Nonlinearities
- General Pooling: Max/Average/Nonlinear, etc.

Generalization of Wiatowski-Bolcskei’ 15

Scattering networks ([Mallat, 2012], [Wiatowski and HB, 2015])

General scattering networks guarantee [Wiatowski \& HB, 2015]

- (vertical) translation invariance
- small deformation sensitivity
essentially irrespective of filters, non-linearities, and poolings!

Wavelet basis -> filter frame

Building blocks

Basic operations in the n-th network layer

Filters: Semi-discrete frame $\Psi_{n}:=\left\{\chi_{n}\right\} \cup\left\{g_{\lambda_{n}}\right\}_{\lambda_{n} \in \Lambda_{n}}$

$$
A_{n}\|f\|_{2}^{2} \leq\left\|f * \chi_{n}\right\|_{2}^{2}+\sum_{\lambda_{n} \in \Lambda_{n}}\left\|f * g_{\lambda_{n}}\right\|^{2} \leq B_{n}\|f\|_{2}^{2}, \quad \forall f \in L^{2}\left(\mathbb{R}^{d}\right)
$$

e.g.: Structured filters

Frames: random or learned filters

Building blocks

Basic operations in the n-th network layer

Filters: Semi-discrete frame $\Psi_{n}:=\left\{\chi_{n}\right\} \cup\left\{g_{\lambda_{n}}\right\}_{\lambda_{n} \in \Lambda_{n}}$
$A_{n}\|f\|_{2}^{2} \leq\left\|f * \chi_{n}\right\|_{2}^{2}+\sum_{\lambda_{n} \in \Lambda_{n}}\left\|f * g_{\lambda_{n}}\right\|^{2} \leq B_{n}\|f\|_{2}^{2}, \quad \forall f \in L^{2}\left(\mathbb{R}^{d}\right)$
e.g.: Unstructured filters

Building blocks

Basic operations in the n-th network layer

Filters: Semi-discrete frame $\Psi_{n}:=\left\{\chi_{n}\right\} \cup\left\{g_{\lambda_{n}}\right\}_{\lambda_{n} \in \Lambda_{n}}$
$A_{n}\|f\|_{2}^{2} \leq\left\|f * \chi_{n}\right\|_{2}^{2}+\sum_{\lambda_{n} \in \Lambda_{n}}\left\|f * g_{\lambda_{n}}\right\|^{2} \leq B_{n}\|f\|_{2}^{2}, \quad \forall f \in L^{2}\left(\mathbb{R}^{d}\right)$
e.g.: Learned filters

Nonlinear activations

Building blocks

Basic operations in the n-th network layer

Non-linearities: Point-wise and Lipschitz-continuous

$$
\left\|M_{n}(f)-M_{n}(h)\right\|_{2} \leq L_{n}\|f-h\|_{2}, \quad \forall f, h \in L^{2}\left(\mathbb{R}^{d}\right)
$$

\Rightarrow Satisfied by virtually all non-linearities used in the deep learning literature!
ReLU: $L_{n}=1$; modulus: $L_{n}=1$; logistic sigmoid: $L_{n}=\frac{1}{4}$; ..

Pooling Building blocks

Basic operations in the n-th network layer

Pooling: In continuous-time according to

$$
f \mapsto S_{n}^{d / 2} P_{n}(f)\left(S_{n} \cdot\right),
$$

where $S_{n} \geq 1$ is the pooling factor and $P_{n}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ is R_{n}-Lipschitz-continuous
\Rightarrow Emulates most poolings used in the deep learning literature!
e.g.: Pooling by sub-sampling $P_{n}(f)=f$ with $R_{n}=1$
e.g.: Pooling by averaging $P_{n}(f)=f * \phi_{n}$ with $R_{n}=\left\|\phi_{n}\right\|_{1}$

Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

$$
B_{n} \leq \min \left\{1, L_{n}^{-2} R_{n}^{-2}\right\}, \quad \forall n \in \mathbb{N} .
$$

Let the pooling factors be $S_{n} \geq 1, n \in \mathbb{N}$. Then,

$$
\left\|\mid \Phi^{n}\left(T_{t} f\right)-\Phi^{n}(f)\right\| \|=\mathcal{O}\left(\frac{\|t\|}{S_{1} \ldots S_{n}}\right),
$$

for all $f \in L^{2}\left(\mathbb{R}^{d}\right), t \in \mathbb{R}^{d}, n \in \mathbb{N}$.

The condition

$$
B_{n} \leq \min \left\{1, L_{n}^{-2} R_{n}^{-2}\right\}, \quad \forall n \in \mathbb{N},
$$

is easily satisfied by normalizing the filters $\left\{g_{\lambda_{n}}\right\}_{\lambda_{n} \in \Lambda_{n}}$.

Vertical translation invariance

Theorem (Wiatowski and HB, 2015)
Assume that the filters, non-linearities, and poolings satisfy

$$
B_{n} \leq \min \left\{1, L_{n}^{-2} R_{n}^{-2}\right\}, \quad \forall n \in \mathbb{N}
$$

Let the pooling factors be $S_{n} \geq 1, n \in \mathbb{N}$. Then,

$$
\left\|\mid \Phi^{n}\left(T_{t} f\right)-\Phi^{n}(f)\right\| \|=\mathcal{O}\left(\frac{\|t\|}{S_{1} \ldots S_{n}}\right)
$$

for all $f \in L^{2}\left(\mathbb{R}^{d}\right), t \in \mathbb{R}^{d}, n \in \mathbb{N}$.
\Rightarrow Features become more invariant with increasing network depth!

Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

$$
B_{n} \leq \min \left\{1, L_{n}^{-2} R_{n}^{-2}\right\}, \quad \forall n \in \mathbb{N} .
$$

Let the pooling factors be $S_{n} \geq 1, n \in \mathbb{N}$. Then,

$$
\left\|\left\|\Phi^{n}\left(T_{t} f\right)-\Phi^{n}(f)\right\|\right\|=\mathcal{O}\left(\frac{\|t\|}{S_{1} \ldots S_{n}}\right)
$$

for all $f \in L^{2}\left(\mathbb{R}^{d}\right), t \in \mathbb{R}^{d}, n \in \mathbb{N}$.

Full translation invariance: If $\lim _{n \rightarrow \infty} S_{1} \cdot S_{2} \cdot \ldots \cdot S_{n}=\infty$, then

$$
\lim _{n \rightarrow \infty}\| \| \Phi^{n}\left(T_{t} f\right)-\Phi^{n}(f)\| \|=0
$$

Philosophy behind invariance results

Mallat's "horizontal" translation invariance [Mallat, 2012]:

$$
\lim _{J \rightarrow \infty} \mid\left\|\Phi_{W}\left(T_{t} f\right)-\Phi_{W}(f)\right\| \|=0, \quad \forall f \in L^{2}\left(\mathbb{R}^{d}\right), \forall t \in \mathbb{R}^{d}
$$

- features become invariant in every network layer, but needs $J \rightarrow \infty$
- applies to wavelet transform and modulus non-linearity without pooling
"Vertical" translation invariance:

$$
\lim _{n \rightarrow \infty}\| \| \Phi^{n}\left(T_{t} f\right)-\Phi^{n}(f)\| \|=0, \quad \forall f \in L^{2}\left(\mathbb{R}^{d}\right), \forall t \in \mathbb{R}^{d}
$$

- features become more invariant with increasing network depth
- applies to general filters, general non-linearities, and general poolings

Non-linear deformations

Non-linear deformation $\left(F_{\tau} f\right)(x)=f(x-\tau(x))$, where $\tau: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$

For "small" τ :

Non-linear deformations

Non-linear deformation $\left(F_{\tau} f\right)(x)=f(x-\tau(x))$, where $\tau: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$

For "large" τ :

Deformation sensitivity for signal classes

$$
\operatorname{Consider}\left(F_{\tau} f\right)(x)=f(x-\tau(x))=f\left(x-e^{-x^{2}}\right)
$$

$f_{2}(x),\left(F_{\tau} f_{2}\right)(x)$

x

For given τ the amount of deformation induced can depend drastically on $f \in L^{2}\left(\mathbb{R}^{d}\right)$

Wiatowski-Bolcskei' 15 Deformation Stability Bounds

Philosophy behind deformation stability/sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]:
$\left\|\mid \Phi_{W}\left(F_{\tau} f\right)-\Phi_{W}(f)\right\|\left\|\leq C\left(2^{-J}\|\tau\|_{\infty}+J\|D \tau\|_{\infty}+\left\|D^{2} \tau\right\|_{\infty}\right)\right\| f \|_{W}$,
for all $f \in H_{W} \subseteq L^{2}\left(\mathbb{R}^{d}\right)$

- The signal class H_{W} and the corresponding norm $\|\cdot\|_{W}$ depend on the mother wavelet (and hence the network)

Our deformation sensitivity bound:

$$
\left\|\Phi\left(F_{\tau} f\right)-\Phi(f)\right\| \leq C_{\mathcal{C}}\|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{d}\right)
$$

- The signal class \mathcal{C} (band-limited functions, cartoon functions, or Lipschitz functions) is independent of the network

Wiatowski-Bolcskei' 15 Deformation Stability Bounds

Philosophy behind deformation stability/sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]:
$\left\|\left|\mid \Phi_{W}\left(F_{\tau} f\right)-\Phi_{W}(f)\| \| \leq C\left(2^{-J}\|\tau\|_{\infty}+J\|D \tau\|_{\infty}+\left\|D^{2} \tau\right\|_{\infty}\right)\|f\|_{W}\right.\right.$, for all $f \in H_{W} \subseteq L^{2}\left(\mathbb{R}^{d}\right)$

- Signal class description complexity implicit via norm \|. $\|_{W}$

Our deformation sensitivity bound:

$$
\left\|\left\|\Phi\left(F_{\tau} f\right)-\Phi(f)\right\|\right\| \leq C_{\mathcal{C}}\|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{d}\right)
$$

- Signal class description complexity explicit via $C_{\mathcal{C}}$
- L-band-limited functions: $C_{\mathcal{C}}=\mathcal{O}(L)$
- cartoon functions of size K : $C_{\mathcal{C}}=\mathcal{O}\left(K^{3 / 2}\right)$
- M-Lipschitz functions $C_{\mathcal{C}}=\mathcal{O}(M)$

Philosophy behind deformation stability/sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]:
$\left\|\mid \Phi_{W}\left(F_{\tau} f\right)-\Phi_{W}(f)\right\|\left\|\leq C\left(2^{-J}\|\tau\|_{\infty}+J\|D \tau\|_{\infty}+\left\|D^{2} \tau\right\|_{\infty}\right)\right\| f \|_{W}$, for all $f \in H_{W} \subseteq L^{2}\left(\mathbb{R}^{d}\right)$

- The bound depends explicitly on higher order derivatives of τ

Our deformation sensitivity bound:

$$
\left\|\left\|\Phi\left(F_{\tau} f\right)-\Phi(f)\right\|\right\| \leq C_{\mathcal{C}}\|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{d}\right)
$$

- The bound implicitly depends on derivative of τ via the condition $\|D \tau\|_{\infty} \leq \frac{1}{2 d}$

Philosophy behind deformation stability/sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]:
$\left\|\left|\left|\Phi_{W}\left(F_{\tau} f\right)-\Phi_{W}(f)\right|\left\|\leq C\left(2^{-J}\|\tau\|_{\infty}+J\|D \tau\|_{\infty}+\left\|D^{2} \tau\right\|_{\infty}\right)\right\| f \|_{W}\right.\right.$, for all $f \in H_{W} \subseteq L^{2}\left(\mathbb{R}^{d}\right)$

- The bound is coupled to horizontal translation invariance

$$
\lim _{J \rightarrow \infty}\left\|\Phi_{W}\left(T_{t} f\right)-\Phi_{W}(f)\right\|=0, \quad \forall f \in L^{2}\left(\mathbb{R}^{d}\right), \forall t \in \mathbb{R}^{d}
$$

Our deformation sensitivity bound:

$$
\left\|\left\|\Phi\left(F_{\tau} f\right)-\Phi(f)\right\|\right\| \leq C_{\mathcal{C}}\|\tau\|_{\infty}^{\alpha}, \quad \forall f \in \mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{d}\right)
$$

- The bound is decoupled from vertical translation invariance

$$
\lim _{n \rightarrow \infty}\| \| \Phi^{n}\left(T_{t} f\right)-\Phi^{n}(f)\| \|=0, \quad \forall f \in L^{2}\left(\mathbb{R}^{d}\right), \forall t \in \mathbb{R}^{d}
$$

What is in between?

- No training until the classifier
- No parameters in the convolutional layers
- Most "control" of regularity and robustness
- Strong performance and explainable features
- Fully trained by large volume of data
- Lots of parameters (largest model capacity)
- Least "control" of regularity and robustness
- Best performance but not explainable

Decomposed Convolutional Filters (DCF)
 Xiuyuan Cheng et al.
 https://arxiv.org/abs/1802.04145

Decomposition of Convolutional Filters

$$
x^{(0)} \mapsto x^{(1)} \mapsto \cdots \mapsto x^{(l-1)} \quad \mapsto \quad x^{(l)} \quad \mapsto \quad \cdots
$$

The mapping in a convolutional layer

$$
x^{(l)}(u, \lambda)=\sigma\left(\sum_{\lambda^{\prime}} \int W_{\lambda^{\prime}, \lambda}^{(l)}\left(v^{\prime}\right) x^{(l-1)}\left(u+v^{\prime}, \lambda^{\prime}\right) d v^{\prime}+b^{(l)}(\lambda)\right)
$$

Decomposition of Convolutional Filters

Introducing bases ψ_{k}

$$
W_{\lambda^{\prime}, \lambda}(u)=\sum_{k=1}^{K}\left(a_{\lambda^{\prime}, \lambda}\right)_{k} \psi_{k}(u)
$$

Decomposition of Convolutional Filters

- Filters viewed in tensors

- Psi prefixed, a trained from data

Reduction in the Number of Parameters

- Number of parameters
- Regular conv layer:
- DCF layer:

$$
\begin{array}{r}
L \times L \times M^{\prime} \times M \\
K \times M^{\prime} \times M
\end{array}
$$

- Forward-pass computation
- Regular conv layer:
$M^{\prime} W^{2} \cdot M\left(1+2 L^{2}\right)$
- DCF layer:
$M^{\prime} W^{2} \cdot 2 K\left(L^{2}+M\right)$

A factor of $\frac{K}{L^{2}}$!

DNS Deep Convolutional Networks

- The convolution network operators L_{j} have many roles:
- Linearize non-linear transformations (symmetries)
- Reduce dimension with projections
- Memory storage of « characteristic » structures
- Difficult to separate these roles when analyzing learned networks

Open Problems

- Can we recover symmetry groups from the matrices $L j$?
- What kind of groups?
- Can we characterise the regularity of $f(x)$ from these groups?
- Can we define classes of high-dimensional «regular» functions that are well approximated by deep neural networks ?
- Can we get approximation theorems giving errors depending on number of training exemples, with a fast decay?

Group Invariant and Equivariant Networks

Cohen, Welling, https://arxiv.org/abs/1602.07576
Sannai, Takai, Cordonnier, https://arxiv.org/abs/1903.01939v2

Definition 2.1. Let G be a group and X and Y two sets. We assume that G acts on X (resp. Y) by $g \cdot x$ (resp. $g * y$) for $g \in G$ and $x \in X$ (resp. $y \in Y$). We say that a map $f: X \rightarrow Y$ is

- G-invariant if $f(g \cdot x)=f(x)$ for any $g \in G$ and any $x \in X$,
- G-equivariant if $f(g \cdot x)=g * f(x)$ for any $g \in G$ and any $x \in X$.

Group Convolution Neural Network

 [Cohen, Welling, https://arxiv.org/abs/1602.07576]$$
\begin{gathered}
{\left[f * \psi^{i}\right](x)=\sum_{y \in \mathbb{Z}^{2}} \sum_{k=1}^{K^{l}} f_{k}(y) \psi_{k}^{i}(x-y)} \\
{[f \star \psi](g)=\sum_{h \in G} \sum_{k} f_{k}(h) \psi_{k}\left(g^{-1} h\right)}
\end{gathered}
$$

Permutation Invariant Functions

When $G=S_{n}$ and the actions are induced by permutation, we call G-invariant (resp. G-equivariant) functions as permutation invariant (resp. permutation equivariant) functions.

Theorem 3.1 ([28] Kolmogorov-Arnold's representation theorem for permutation actions). Let $K \subset$ \mathbb{R}^{n} be a compact set. Then, any continuous S_{n}-invariant function $f: K \longmapsto \mathbb{R}$ can be represented as

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\rho\left(\sum_{i=1}^{n} \phi\left(x_{i}\right)\right) \tag{1}
\end{equation*}
$$

for some continuous function $\rho: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$. Here, $\phi: \mathbb{R} \rightarrow \mathbb{R}^{n+1} ; x \mapsto\left(1, x, x^{2}, \ldots, x^{n}\right)^{\top}$.

Permutation Equivariant Functions

Proposition 4.1. A map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is S_{n}-equivariant if and only if there is a $\operatorname{Stab}(1)$-invariant function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying $F=(f, f \circ(12), \ldots, f \circ(1 n))^{\top}$. Here, $(1 i) \in S_{n}$ is the transposition between 1 and i.

Corollary 4.1 (Representation of $\operatorname{Stab}(1)$-invariant function). Let $K \subset \mathbb{R}^{n}$ be a compact set, let $f: K \longrightarrow \mathbb{R}$ be a continuous and $\operatorname{Stab}(1)$-invariant function. Then, $f(\boldsymbol{x})$ can be represented as

$$
f(\boldsymbol{x})=f\left(x_{1}, \ldots, x_{n}\right)=\rho\left(x_{1}, \sum_{i=2}^{n} \phi\left(x_{i}\right)\right)
$$

for some continuous function $\rho: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$. Here, $\phi: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is similar as in Theorem 3.1.

Thank you!

