Robust Statistics and Generative Adversarial Networks

Yuan YAO HKUST

Chao Gao (Chicago) Jiyu Liu (Yale)

Weizhi Zhu (HKUST)

Deep Learning is Notoriously Not Robust!

- Imperceivable adversarial examples are ubiquitous to fail neural networks
- How can one achieve robustness?

Robust Optimization

• Traditional training:

$$\min_{\theta} J_n(\theta, \mathbf{z} = (x_i, y_i)_{i=1}^n)$$

- e.g. square or cross-entropy loss as negative log-likelihood of logit models
- Robust optimization (Madry et al. ICLR'2018):

$$\min_{\theta} \max_{\|\epsilon_i\| \leq \delta} J_n(\theta, \mathbf{z} = (x_i + \epsilon_i, y_i)_{i=1}^n)$$

robust to any distributions, yet computationally hard

Distributionally Robust Optimization (DRO)

• Distributional Robust Optimization:

$$\min_{\theta} \max_{\epsilon} \mathbb{E}_{\mathbf{z} \sim P_{\epsilon} \in \mathcal{D}}[J_n(\theta, \mathbf{z})]$$

ullet $\mathcal D$ is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

$$\mathcal{D} = \{P_{\epsilon} : W_2(P_{\epsilon}, \text{uniform distribution}) \leq \epsilon\}$$

where DRO may be reduced to regularized maximum likelihood estimates (Shafieezadeh-Abadeh, Esfahani, Kuhn, NIPS'2015) that are convex optimizations and tractable

Wasserstein DRO and Sqrt-Lasso

Theorem (B., Kang, Murthy (2016)) Suppose that

$$c\left(\left(x,y\right),\left(x',y'\right)\right) = \begin{cases} \left\|x-x'\right\|_{q}^{2} & \text{if } y=y'\\ \infty & \text{if } y\neq y' \end{cases}.$$

Then, if 1/p + 1/q = 1

$$\max_{P:D_{c}(P,P_{n})\leq\delta}E_{P}^{1/2}\left(\left(Y-\beta^{T}X\right)^{2}\right)=E_{P_{n}}^{1/2}\left[\left(Y-\beta^{T}X\right)^{2}\right]+\sqrt{\delta}\left\|\beta\right\|_{p}.$$

Remark 1: This is sqrt-Lasso (Belloni et al. (2011)).

Remark 2: Uses RoPA duality theorem & "judicious choice of $c(\cdot)$ "

Certified Robustness of Lasso

Take $q = \infty$ and p = 1, with

$$c\left((x,y),\left(x',y'\right)\right) = \begin{cases} \|x - x'\|_{\infty}^{2} & \text{if } y = y' \\ \infty & \text{if } y \neq y' \end{cases}$$

Then for

$$P_n' = \frac{1}{n} \sum_i \delta_{x_i'}$$

with $||x_i - x_i'||_{\infty} \leq \delta$,

$$D_c(P'_n,P_n)=\int \pi((x,y),(x',y'))c\left((x,y),(x',y')\right)\leq \delta,$$

for small enough δ and well-separated x's. Sqrt-Lasso

$$\min_{\beta} \left\{ E_{P_n}^{1/2} \left[\left(Y - \beta^T X \right)^2 \right] + \sqrt{\delta} \|\beta\|_1 \right\}^2$$

$$= \min_{\beta} \max_{P: D_c(P, P_n) \le \delta} E_P \left(\left(Y - \beta^T X \right)^2 \right)$$

provides a certified robust estimate in terms of Madry's adversarial training, using a convex Wasserstein relaxation.

TV-neighborhood

Now how about the TV-uncertainty set?

```
\mathcal{D} = \{P_{\epsilon} : TV(P_{\epsilon}, \text{uniform distribution}) \leq \epsilon\}?
```

$$X_1, ..., X_n \sim (1 - \epsilon)P_\theta + \epsilon Q$$

$$X_1,...,X_n \sim (1-\epsilon)P_{ heta} + \epsilon Q$$
 parameter of interest

$$X_1,...,X_n \sim (1-\epsilon)P_\theta + \epsilon Q$$
 contamination proportion parameter of interest

An Example

$$X_1,...,X_n \sim (1-\epsilon)N(\theta,I_p) + \epsilon Q.$$

An Example

$$X_1, ..., X_n \sim (1 - \epsilon)N(\theta, I_p) + \epsilon Q.$$

how to estimate?

Robust Maxmum-Likelihood Does not work!

$$X_1,...,X_n \sim (1-\epsilon)N(\theta,I_p) + \epsilon Q.$$

Robust Maxmum-Likelihood Does not work!

$$X_1,...,X_n \sim (1-\epsilon)N(\theta,I_p) + \epsilon Q.$$

$$\ell(heta,Q) = ext{negative log-likelihood} = \sum_{i=1}^{"} (heta-X_i)^2 \ \sim (1-\epsilon)\mathbb{E}_{\mathcal{N}(heta)}(heta-X)^2 + \epsilon\mathbb{E}_Q(heta-X)^2$$

the sample mean

$$\hat{\theta}_{mean} = \frac{1}{n} \sum_{i=1}^{n} X_i = \arg\min_{\theta} \ell(\theta, Q)$$

$$\min_{\theta} \max_{Q} \ell(\theta, Q) \geq \max_{Q} \min_{\theta} \ell(\theta, Q) = \max_{Q} \ell(\hat{\theta}_{mean}, Q) = \infty$$

Medians

1. Coordinatewise median

$$\hat{\theta} = (\hat{\theta}_j)$$
, where $\hat{\theta}_j = \text{Median}(\{X_{ij}\}_{i=1}^n)$;

Medians

1. Coordinatewise median

$$\hat{\theta} = (\hat{\theta}_j), \text{ where } \hat{\theta}_j = \text{Median}(\{X_{ij}\}_{i=1}^n);$$

2. Tukey's median

$$\hat{\theta} = \arg\max_{\eta \in \mathbb{R}^p} \min_{||u||=1} \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i > u^T \eta\}.$$

Comparisons

	Coordinatewise Median	Tukey's Median
breakdown point	1/2	1/3
statistical precision	$\frac{p}{n}$	$\frac{p}{n}$
(no contamination)		
statistical precision	$\frac{p}{n} + p\epsilon^2$	$\frac{p}{n} + \epsilon^2$: minimax
(with contamination)	''	[Chen-Gao-Ren'15]
computational complexity	Polynomial	NP-hard
		[Amenta et al. '00]

Note: R-package for Tukey median can not deal with more than 10 dimensions!

[https://github.com/ChenMengjie/DepthDescent]

$$\left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i} > u^{T} \eta\} \wedge \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i} \leq u^{T} \eta\} \right\}$$

$$\min_{\|u\|=1} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i} > u^{T} \eta\} \wedge \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i} \leq u^{T} \eta\} \right\}$$

$$\hat{\theta} = \arg\max_{\eta \in \mathbb{R}^p} \min_{\|u\|=1} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i > u^T \eta\} \wedge \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i \le u^T \eta\} \right\}$$

$$\hat{\theta} = \arg\max_{\eta \in \mathbb{R}^p} \min_{\|u\|=1} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i > u^T \eta\} \wedge \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i \le u^T \eta\} \right\}$$

$$= \arg\max_{\eta \in \mathbb{R}^p} \min_{\|u\|=1} \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i > u^T \eta\}.$$

model

$$y|X \sim N(X^T \beta, \sigma^2)$$

model

$$y|X \sim N(X^T\beta, \sigma^2)$$

embedding

$$Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$$

model

$$y|X \sim N(X^T\beta, \sigma^2)$$

embedding

$$Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$$

$$u^T X y | X \sim N(u^T X X^T \beta, \sigma^2 u^T X X^T u)$$

model

$$y|X \sim N(X^T\beta, \sigma^2)$$

embedding

$$Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$$

$$u^T X y | X \sim N(u^T X X^T \beta, \sigma^2 u^T X X^T u)$$

$$\left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i}(y_{i} - X_{i}^{T} \eta) > 0\} \wedge \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{u^{T} X_{i}(y_{i} - X_{i}^{T} \eta) \leq 0\} \right\}$$

model

$$y|X \sim N(X^T\beta, \sigma^2)$$

embedding

$$Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$$

$$u^T X y | X \sim N(u^T X X^T \beta, \sigma^2 u^T X X^T u)$$

$$\min_{u \in \mathbb{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I} \{ u^T X_i (y_i - X_i^T \eta) > 0 \} \wedge \frac{1}{n} \sum_{i=1}^n \mathbb{I} \{ u^T X_i (y_i - X_i^T \eta) \le 0 \} \right\}$$

model

$$y|X \sim N(X^T \beta, \sigma^2)$$

embedding

$$Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$$

$$u^T X y | X \sim N(u^T X X^T \beta, \sigma^2 u^T X X^T u)$$

$$\hat{\beta} = \underset{\eta \in \mathbb{R}^p}{\operatorname{argmax}} \min_{u \in \mathbb{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I} \{ u^T X_i (y_i - X_i^T \eta) > 0 \} \wedge \frac{1}{n} \sum_{i=1}^n \mathbb{I} \{ u^T X_i (y_i - X_i^T \eta) \le 0 \} \right\}$$

model

$$y|X \sim N(X^T\beta, \sigma^2)$$

embedding

$$Xy|X \sim N(XX^T\beta, \sigma^2 XX^T)$$

projection

$$u^T X y | X \sim N(u^T X X^T \beta, \sigma^2 u^T X X^T u)$$

$$\hat{\beta} = \underset{\eta \in \mathbb{R}^p}{\operatorname{argmax}} \min_{u \in \mathbb{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i (y_i - X_i^T \eta) > 0\} \wedge \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{u^T X_i (y_i - X_i^T \eta) \le 0\} \right\}$$

[Rousseeuw & Hubert, 1999]

Tukey's depth is not a special case of regression depth.

$$(X,Y) \in \mathbb{R}^p \times \mathbb{R}^m \sim \mathbb{P}$$

$$(X,Y) \in \mathbb{R}^p \times \mathbb{R}^m \sim \mathbb{P}$$

$$B \in \mathbb{R}^{p \times m}$$

$$(X,Y) \in \mathbb{R}^p \times \mathbb{R}^m \sim \mathbb{P}$$

$$B \in \mathbb{R}^{p \times m}$$

population version:

$$\mathcal{D}_{\mathcal{U}}(B, \mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P} \left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$$

$$(X,Y) \in \mathbb{R}^p \times \mathbb{R}^m \sim \mathbb{P}$$

$$B \in \mathbb{R}^{p \times m}$$

population version:

$$\mathcal{D}_{\mathcal{U}}(B, \mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P} \left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$$

empirical version:

$$\mathcal{D}_{\mathcal{U}}(B, \{(X_i, Y_i)\}_{i=1}^n) = \inf_{U \in \mathcal{U}} \frac{1}{n} \sum_{i=1}^n \mathbb{I} \left\{ \left\langle U^T X_i, Y_i - B^T X_i \right\rangle \ge 0 \right\}$$

$$(X,Y) \in \mathbb{R}^p \times \mathbb{R}^m \sim \mathbb{P}$$

$$B \in \mathbb{R}^{p \times m}$$

population version:

$$\mathcal{D}_{\mathcal{U}}(B, \mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P} \left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$$

empirical version:

$$\mathcal{D}_{\mathcal{U}}(B, \{(X_i, Y_i)\}_{i=1}^n) = \inf_{U \in \mathcal{U}} \frac{1}{n} \sum_{i=1}^n \mathbb{I} \left\{ \left\langle U^T X_i, Y_i - B^T X_i \right\rangle \ge 0 \right\}$$

$$\mathcal{D}_{\mathcal{U}}(B, \mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P} \left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$$

$$\mathcal{D}_{\mathcal{U}}(B, \mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P} \left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$$

$$p = 1, X = 1 \in \mathbb{R},$$

$$\mathcal{D}_{\mathcal{U}}(b, \mathbb{P}) = \inf_{u \in \mathcal{U}} \mathbb{P} \left\{ u^{T}(Y - b) \ge 0 \right\}$$

$$\mathcal{D}_{\mathcal{U}}(B, \mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P} \left\{ \left\langle U^T X, Y - B^T X \right\rangle \ge 0 \right\}$$

$$p = 1, X = 1 \in \mathbb{R},$$

$$\mathcal{D}_{\mathcal{U}}(b, \mathbb{P}) = \inf_{u \in \mathcal{U}} \mathbb{P} \left\{ u^{T}(Y - b) \ge 0 \right\}$$

$$m = 1,$$

$$\mathcal{D}_{\mathcal{U}}(\beta, \mathbb{P}) = \inf_{U \in \mathcal{U}} \mathbb{P} \left\{ u^T X (y - \beta^T X) \ge 0 \right\}$$

Proposition. For any $\delta > 0$,

$$\sup_{B \in \mathbb{R}^{p \times m}} |\mathcal{D}(B, \mathbb{P}_n) - \mathcal{D}(B, \mathbb{P})| \le C\sqrt{\frac{pm}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}},$$

with probability at least $1-2\delta$.

Proposition. For any $\delta > 0$,

$$\sup_{B \in \mathbb{R}^{p \times m}} |\mathcal{D}(B, \mathbb{P}_n) - \mathcal{D}(B, \mathbb{P})| \le C\sqrt{\frac{pm}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}},$$

with probability at least $1-2\delta$.

Proposition.

$$\sup_{B,Q} |\mathcal{D}(B, (1 - \epsilon P_{B^*}) + \epsilon Q) - \mathcal{D}(B, P_{B^*})| \le \epsilon$$

 $(X,Y) \sim P_B$

$$(X,Y) \sim P_B: X \sim N(0,\Sigma), \quad Y|X \sim N(B^T X, \sigma^2 I_m)$$

$$(X, Y) \sim P_B : X \sim N(0, \Sigma), \quad Y | X \sim N(B^T X, \sigma^2 I_m)$$

 $(X_1, Y_1), ..., (X_n, Y_n) \sim (1 - \epsilon) P_B + \epsilon Q$

$$(X,Y) \sim P_B: X \sim N(0,\Sigma), \quad Y|X \sim N(B^T X, \sigma^2 I_m)$$

$$(X_1, Y_1), ..., (X_n, Y_n) \sim (1 - \epsilon)P_B + \epsilon Q$$

Theorem [G17]. For some C > 0,

$$\operatorname{Tr}((\widehat{B}-B)^T\Sigma(\widehat{B}-B)) \leq C\sigma^2\left(\frac{pm}{n}\vee\epsilon^2\right),$$

$$\|\widehat{B} - B\|_{\mathrm{F}}^2 \le C \frac{\sigma^2}{\kappa^2} \left(\frac{pm}{n} \vee \epsilon^2 \right),$$

with high probability uniformly over B,Q.

$$X_1,...,X_n \sim (1-\epsilon)N(0,\Sigma) + \epsilon Q.$$

$$X_1, ..., X_n \sim (1 - \epsilon)N(0, \Sigma) + \epsilon Q.$$

how to estimate?

$$\mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) = \min_{\|u\|=1} \min \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 \ge u^T \Gamma u\}, \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 < u^T \Gamma u\} \right\}$$

$$\mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) = \min_{\|u\|=1} \min \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 \ge u^T \Gamma u\}, \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 < u^T \Gamma u\} \right\}$$

$$\hat{\Gamma} = \arg \max_{\Gamma \succeq 0} \mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) \qquad \hat{\Sigma} = \hat{\Gamma}/\beta$$

$$\mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) = \min_{\|u\|=1} \min \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 \ge u^T \Gamma u\}, \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{|u^T X_i|^2 < u^T \Gamma u\} \right\}$$

$$\hat{\Gamma} = \arg \max_{\Gamma \succeq 0} \mathcal{D}(\Gamma, \{X_i\}_{i=1}^n) \qquad \hat{\Sigma} = \hat{\Gamma}/\beta$$

Theorem [CGR15]. For some C > 0,

$$\|\hat{\Sigma} - \Sigma\|_{\text{op}}^2 \le C\left(\frac{p}{n} \vee \epsilon^2\right)$$

with high probability uniformly over Σ, Q .

Summary

mean	$\ \cdot\ ^2$	$\frac{p}{n} \vee \epsilon^2$	
reduced rank regression	$\lVert \cdot \rVert_{ ext{F}}^2$	$\frac{\sigma^2}{\kappa^2} \frac{r(p+m)}{n} \vee \frac{\sigma^2}{\kappa^2} \epsilon^2$	
Gaussian graphical model	$\ \cdot\ _{\ell_1}^2$	$\frac{s^2 \log(ep/s)}{n} \vee s\epsilon^2$	
covariance matrix	$\ \cdot\ _{\mathrm{op}}^2$	$\frac{p}{n} \vee \epsilon^2$	
sparse PCA	$\lVert \cdot \rVert_{ ext{F}}^2$	$\frac{s\log(ep/s)}{n\lambda^2}\vee\frac{\epsilon^2}{\lambda^2}$	

Summary

mean	$\ \cdot\ ^2$	$\frac{p}{n}\sqrt{\epsilon^2}$
reduced rank regression	$\lVert \cdot \rVert_{ ext{F}}^2$	$\frac{\sigma^2}{\kappa^2} \frac{r(p+m)}{n} \sqrt{\frac{\sigma^2}{\kappa^2} \epsilon^2}$
Gaussian graphical model	$\ \cdot\ _{\ell_1}^2$	$\frac{s^2 \log(ep/s)}{n} \vee s\epsilon^2$
covariance matrix	$\ \cdot\ _{\mathrm{op}}^2$	$\frac{p}{n}\sqrt{\epsilon^2}$
sparse PCA	$\lVert \cdot \rVert_{ ext{F}}^2$	$\frac{s\log(ep/s)}{n\lambda^2}\sqrt{\frac{\epsilon^2}{\lambda^2}}$

Computation

Computational Challenges

$$X_1,...,X_n \sim (1-\epsilon)N(\theta,I_p) + \epsilon Q.$$

Computational Challenges

$$X_1,...,X_n \sim (1-\epsilon)N(\theta,I_p) + \epsilon Q.$$

Lai, Rao, Vempala Diakonikolas, Kamath, Kane, Li, Moitra, Stewart Balakrishnan, Du, Singh

Computational Challenges

$$X_1,...,X_n \sim (1-\epsilon)N(\theta,I_p) + \epsilon Q.$$

Lai, Rao, Vempala Diakonikolas, Kamath, Kane, Li, Moitra, Stewart Balakrishnan, Du, Singh

- Polynomial algorithms are proposed [Diakonikolas et al.'16, Lai et al. 16]
 of minimax optimal statistical precision
 - needs information on second or higher order of moments
 - ullet some priori knowledge about ϵ

A well-defined objective function

- · A well-defined objective function
- Adaptive to ϵ and Σ

- A well-defined objective function
- Adaptive to ϵ and Σ
- Optimal for any elliptical distribution

A practically good algorithm?

Generative Adversarial Networks [Goodfellow et al. 2014]

Note: R-package for Tukey median can not deal with more than 10 dimensions [https://github.com/ChenMengjie/DepthDescent]

Robust Learning of Cauchy Distributions

Table 4: Comparison of various methods of robust location estimation under Cauchy distributions. Samples are drawn from $(1 - \epsilon)$ Cauchy $(0_p, I_p) + \epsilon Q$ with $\epsilon = 0.2, p = 50$ and various choices of Q. Sample size: 50,000. Discriminator net structure: 50-50-25-1. Generator $g_{\omega}(\xi)$ structure: 48-48-32-24-12-1 with absolute value activation function in the output layer.

Contamination Q	JS - $GAN(G_1)$	JS - $GAN(G_2)$	Dimension Halving	Iterative Filtering
Cauchy $(1.5 * 1_p, I_p)$	0.0664 (0.0065)	0.0743 (0.0103)	0.3529 (0.0543)	0.1244 (0.0114)
Cauchy $(5.0*1_p, I_p)$	0.0480 (0.0058)	0.0540 (0.0064)	0.4855 (0.0616)	0.1687 (0.0310)
Cauchy $(1.5*1_p, 5*I_p)$	0.0754 (0.0135)	0.0742 (0.0111)	0.3726 (0.0530)	0.1220 (0.0112)
$Normal(1.5*1_p, 5*I_p)$	0.0702 (0.0064)	0.0713 (0.0088)	0.3915 (0.0232)	0.1048 (0.0288))

- Dimension Halving: [Lai et al.'16] https://github.com/kal2000/AgnosticMeanAndCovarianceCode.
- Iterative Filtering: [Diakonikolas et al.'17]
 https://github.com/hoonose/robust-filter.

f-GAN

Given a strictly convex function f that satisfies f(1) = 0, the f-divergence between two probability distributions P and Q is defined by

$$D_f(P||Q) = \int f\left(\frac{p}{q}\right) dQ. \tag{8}$$

Let f^* be the convex conjugate of f. A variational lower bound of (8) is

$$D_f(P||Q) \ge \sup_{T \in \mathcal{T}} \left[\mathbb{E}_P T(X) - \mathbb{E}_Q f^*(T(X)) \right]. \tag{9}$$

where equality holds whenever the class \mathcal{T} contains the function f'(p/q).

[Nowozin-Cseke-Tomioka'16] f-GAN minimizes the variational lower bound (9)

$$\widehat{P} = \underset{Q \in \mathcal{Q}}{\operatorname{arg \, min \, sup}} \left[\frac{1}{n} \sum_{i=1}^{n} T(X_i) - \mathbb{E}_Q f^*(T(X)) \right]. \tag{10}$$

with i.i.d. observations $X_1, ..., X_n \sim P$.

From f-GAN to Tukey's Median: f-learning

Consider the special case

$$\mathcal{T} = \left\{ f'\left(\frac{\widetilde{q}}{q}\right) : \widetilde{q} \in \widetilde{\mathcal{Q}} \right\}. \tag{11}$$

which is tight if $P \in \widetilde{\mathcal{Q}}$. The sample version leads to the following f-learning

$$\widehat{P} = \underset{Q \in \mathcal{Q}}{\operatorname{arg \, min \, sup}} \left[\frac{1}{n} \sum_{i=1}^{n} f' \left(\frac{\widetilde{q}(X_i)}{q(X_i)} \right) - \mathbb{E}_Q f^* \left(f' \left(\frac{\widetilde{q}(X)}{q(X)} \right) \right) \right]. \tag{12}$$

- If $f(x) = x \log x$, $Q = \widetilde{Q}$, (12) \Rightarrow Maximum Likelihood Estimate
- If f(x) = (x-1)+, then $D_f(P||Q) = \frac{1}{2} \int |p-q|$ is the TV-distance, $f^*(t) = t\mathbb{I}\{0 \le t \le 1\}$, $f\text{-GAN} \Rightarrow \text{TV-GAN}$
 - $Q = \{N(\eta, I_p) : \eta \in \mathbb{R}^p\}$ and $\widetilde{Q} = \{N(\widetilde{\eta}, I_p) : \|\widetilde{\eta} \eta\| \le r\}$, (12) $\stackrel{r \to 0}{\Rightarrow}$

Tukey's Median

f-Learning

f-Learning

f-divergence
$$D_f(P||Q) = \int f\left(\frac{p}{q}\right) dQ$$

f-divergence
$$D_f(P\|Q) = \int f\left(\frac{p}{q}\right) dQ$$

$$f(u) = \sup_{t} (tu - f^*(t))$$

f-divergence
$$D_f(P||Q) = \int f\left(\frac{p}{q}\right)dQ$$

variational representation

$$= \sup_{T} \left[\mathbb{E}_{X \sim P} T(X) - \mathbb{E}_{X \sim Q} f^*(T(X)) \right]$$

f-divergence
$$D_f(P||Q) = \int f\left(\frac{p}{q}\right) dQ$$

variational representation

$$= \sup_{T} \left[\mathbb{E}_{X \sim P} T(X) - \mathbb{E}_{X \sim Q} f^*(T(X)) \right]$$

$$T(x) = f'\left(\frac{p(x)}{q(x)}\right)$$

f-divergence
$$D_f(P||Q) = \int f\left(\frac{p}{q}\right) dQ$$

variational representation

$$= \sup_{T} \left[\mathbb{E}_{X \sim P} T(X) - \mathbb{E}_{X \sim Q} f^*(T(X)) \right]$$

$$= \sup_{\tilde{Q}} \left\{ \mathbb{E}_{X \sim P} f' \left(\frac{d\tilde{Q}(X)}{dQ(X)} \right) - \mathbb{E}_{X \sim Q} f^* \left(f' \left(\frac{d\tilde{Q}(X)}{dQ(X)} \right) \right) \right\}$$

$$\max_{T \in \mathcal{T}} \left\{ \frac{1}{n} \sum_{i=1}^{n} T(X_i) - \int f^*(T) dQ \right\}$$

$$\max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} f' \left(\frac{\tilde{q}(X_i)}{q(X_i)} \right) - \int f^* \left(f' \left(\frac{\tilde{q}}{q} \right) \right) dQ \right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{T \in \mathcal{T}} \left\{ \frac{1}{n} \sum_{i=1}^{n} T(X_i) - \int f^*(T) dQ \right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} f' \left(\frac{\tilde{q}(X_i)}{q(X_i)} \right) - \int f^* \left(f' \left(\frac{\tilde{q}}{q} \right) \right) dQ \right\}$$

f-GAN
$$\min_{Q \in \mathcal{Q}} \max_{T \in \mathcal{T}} \left\{ \frac{1}{n} \sum_{i=1}^{n} T(X_i) - \int f^*(T) dQ \right\}$$

$$\textbf{f-Learning} \quad \min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} f' \left(\frac{\tilde{q}(X_i)}{q(X_i)} \right) - \int f^* \left(f' \left(\frac{\tilde{q}}{q} \right) \right) dQ \right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{T \in \mathcal{T}} \left\{ \frac{1}{n} \sum_{i=1}^{n} T(X_i) - \int f^*(T) dQ \right\}$$

$$\textbf{f-Learning} \quad \min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} f' \left(\frac{\tilde{q}(X_i)}{q(X_i)} \right) - \int f^* \left(f' \left(\frac{\tilde{q}}{q} \right) \right) dQ \right\}$$

Jensen-Shannon	$f(x) = x \log x - (x+1)\log(x+1)$	GAN

[Goodfellow et al.]

Jensen-Shannon	$f(x) = x \log x - (x+1)\log(x+1)$	GAN
Kullback-Leibler	$f(x) = x \log x$	MLE

[Goodfellow et al.]

Jensen-Shannon	$f(x) = x \log x - (x+1)\log(x+1)$	GAN
Kullback-Leibler	$f(x) = x \log x$	MLE
Hellinger Squared	$f(x) = 2 - 2\sqrt{x}$	rho

[Goodfellow et al., Baraud and Birge]

Jensen-Shannon	$f(x) = x \log x - (x+1)\log(x+1)$	GAN
Kullback-Leibler	$f(x) = x \log x$	MLE
Hellinger Squared	$f(x) = 2 - 2\sqrt{x}$	rho
Total Variation	$f(x) = (x-1)_+$	depth

[Goodfellow et al., Baraud and Birge]

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q \left(\frac{\tilde{q}}{q} \ge 1 \right) \right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q \left(\frac{\tilde{q}}{q} \ge 1 \right) \right\}$$

$$Q = \left\{ N(\theta, I_p) : \theta \in \mathbb{R}^p \right\} \qquad \tilde{Q} = \left\{ N(\tilde{\theta}, I_p) : \tilde{\theta} \in \mathcal{N}_r(\theta) \right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q \left(\frac{\tilde{q}}{q} \ge 1 \right) \right\}$$

$$Q = \left\{ N(\theta, I_p) : \theta \in \mathbb{R}^p \right\} \qquad \tilde{Q} = \left\{ N(\tilde{\theta}, I_p) : \tilde{\theta} \in \mathcal{N}_r(\theta) \right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q \left(\frac{\tilde{q}}{q} \ge 1 \right) \right\}$$

$$Q = \left\{ N(\theta, I_p) : \theta \in \mathbb{R}^p \right\} \qquad \tilde{Q} = \left\{ N(\tilde{\theta}, I_p) : \tilde{\theta} \in \mathcal{N}_r(\theta) \right\}$$

Tukey depth $\max_{\theta \in \mathbb{R}} \min_{\|u\|=1} \frac{1}{n} \sum_{i=1}^n \mathbb{I}\left\{u^T X_i \geq u^T \theta\right\}$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q \left(\frac{\tilde{q}}{q} \ge 1 \right) \right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q \left(\frac{\tilde{q}}{q} \ge 1 \right) \right\}$$

$$\mathcal{Q} = \left\{ N(0, \Sigma) : \Sigma \in \mathbb{R}^{p \times p} \right\} \quad \tilde{\mathcal{Q}} = \left\{ N(0, \tilde{\Sigma}) : \tilde{\Sigma} = \Sigma + ruu^T, \|u\| = 1 \right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q \left(\frac{\tilde{q}}{q} \ge 1 \right) \right\}$$

$$Q = \left\{ N(0, \Sigma) : \Sigma \in \mathbb{R}^{p \times p} \right\} \quad \tilde{Q} = \left\{ N(0, \tilde{\Sigma}) : \tilde{\Sigma} = \Sigma + ruu^T, ||u|| = 1 \right\}$$

$$\min_{Q \in \mathcal{Q}} \max_{\tilde{Q} \in \tilde{\mathcal{Q}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \left\{ \frac{\tilde{q}(X_i)}{q(X_i)} \ge 1 \right\} - Q \left(\frac{\tilde{q}}{q} \ge 1 \right) \right\}$$

$$Q = \left\{ N(0, \Sigma) : \Sigma \in \mathbb{R}^{p \times p} \right\} \quad \tilde{Q} = \left\{ N(0, \tilde{\Sigma}) : \tilde{\Sigma} = \Sigma + ruu^T, ||u|| = 1 \right\}$$

(related to) matrix depth

$$\max_{\Sigma} \min_{\|u\|=1} \left[\left(\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{|u^{T} X_{i}|^{2} \leq u^{T} \Sigma u\} - \mathbb{P}(\chi_{1}^{2} \leq 1) \right) \wedge \left(\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{|u^{T} X_{i}|^{2} > u^{T} \Sigma u\} - \mathbb{P}(\chi_{1}^{2} > 1) \right) \right]$$

robust statistics community deep learning community robust statistics community

f-Learning f-GAN deep learning community robust statistics community

f-Learning f-GAN deep learning community

practically good algorithms

theoretical foundation

robust statistics community

f-Learning f-GAN deep learning community

practically good algorithms

$$\widehat{\theta} = \underset{\eta}{\operatorname{argmin}} \sup_{w,b} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + e^{-w^{T} X_{i} - b}} - E_{\eta} \frac{1}{1 + e^{-w^{T} X - b}} \right]$$

$$\widehat{\theta} = \underset{\eta}{\operatorname{argmin}} \sup_{w,b} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + e^{-w^{T}X_{i} - b}} - E_{\eta} \frac{1}{1 + e^{-w^{T}X - b}} \right]$$

$$N(\eta, I_{p})$$

logistic regression classifier

$$\widehat{\theta} = \underset{\eta}{\operatorname{argmin}} \sup_{w,b} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + e^{-w^{T}X_{i} - b}} - E_{\eta} \frac{1}{1 + e^{-w^{T}X - b}} \right]$$

$$N(\eta, I_{p})$$

logistic regression classifier

Theorem [GLYZ18]. For some C > 0,

$$\|\widehat{\theta} - \theta\|^2 \le C\left(\frac{p}{n} \vee \epsilon^2\right)$$

with high probability uniformly over $\theta \in \mathbb{R}^p, Q$.

TV-GAN rugged landscape!

Figure: Heatmaps of the landscape of $F(\eta,w)=\sup_b [E_P \operatorname{sigmoid}(wX+b)-E_{N(\eta,1)}\operatorname{sigmoid}(wX+b)]$, where b is maximized out for visualization. Left: samples are drawn from $P=(1-\epsilon)N(1,1)+\epsilon N(1.5,1)$ with $\epsilon=0.2$. Right: samples are drawn from $P=(1-\epsilon)N(1,1)+\epsilon N(1.5,1)$ with $\epsilon=0.2$. Right: samples are drawn from $P=(1-\epsilon)N(1,1)+\epsilon N(1.5,1)$ with $\epsilon=0.2$. Left: the landscape is good in the sense that no matter whether we start from the left-top area or the right-bottom area of the heatmap, gradient ascent on η does not consistently increase or decrease the value of η . This is because the signal becomes weak when it is close to the saddle point around $\eta=1$. Right: it is clear that $\tilde{F}(w)=F(\eta,w)$ has two local maxima for a given η , achieved at $w=+\infty$ and $w=-\infty$. In fact, the global maximum for $\tilde{F}(w)$ has a phase transition from $w=+\infty$ to $w=-\infty$ as η grows. For example, the maximum is achieved at $w=+\infty$ when $\eta=1$ (blue solid) and is achieved at $w=-\infty$ when $\eta=5$ (red solid). Unfortunately, even if we initialize with $\eta_0=1$ and $w_0>0$, gradient ascents on η will only increase the value of η (green dash), and thus as long as the discriminator cannot reach the global maximizer, w will be stuck in the positive half space $\{w:w>0\}$ and further increase the value of η .

The Original JS-GAN

[Goodfellow et al. 2014] For $f(x) = x \log x - (x+1) \log \frac{x+1}{2}$,

$$\widehat{\theta} = \arg\min_{\eta \in \mathbb{R}^p} \max_{D \in \mathcal{D}} \left[\frac{1}{n} \sum_{i=1}^n \log D(X_i) + \mathbb{E}_{\mathcal{N}(\eta, I_p)} \log(1 - D(X)) \right] + \log 4. \quad (15)$$

What are \mathcal{D} , the class of discriminators?

• Single layer (no hidden layer):

$$\mathcal{D} = \left\{ D(x) = \operatorname{sigmoid}(w^T x + b) : w \in \mathbb{R}^p, b \in \mathbb{R} \right\}$$

• One-hidden or Multiple layer:

$$\mathcal{D} = \left\{ D(x) = \operatorname{sigmoid}(w^T g(X)) \right\}$$

$$\widehat{\theta} = \underset{\eta \in \mathbb{R}^p}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_{\eta} \log(1 - T(X)) \right] + \log 4$$

$$\widehat{\theta} = \underset{\eta \in \mathbb{R}^p}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_{\eta} \log(1 - T(X)) \right] + \log 4$$

numerical experiment

$$X_1, ..., X_n \sim (1 - \epsilon)N(\theta, I_p) + \epsilon N(\widetilde{\theta}, I_p)$$

$$\widehat{\theta} = \underset{\eta \in \mathbb{R}^p}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_{\eta} \log(1 - T(X)) \right] + \log 4$$

numerical experiment

$$X_1, ..., X_n \sim (1 - \epsilon)N(\theta, I_p) + \epsilon N(\widetilde{\theta}, I_p)$$

$$\widehat{\theta} = \underset{\eta \in \mathbb{R}^p}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_{\eta} \log(1 - T(X)) \right] + \log 4$$

numerical experiment

$$X_1, ..., X_n \sim (1 - \epsilon)N(\theta, I_p) + \epsilon N(\widetilde{\theta}, I_p)$$

$$\widehat{\theta} \approx (1 - \epsilon)\theta + \epsilon \widetilde{\theta}$$

$$\widehat{\theta} = \underset{\eta \in \mathbb{R}^p}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_{\eta} \log(1 - T(X)) \right] + \log 4$$

numerical experiment

$$X_1, ..., X_n \sim (1 - \epsilon)N(\theta, I_p) + \epsilon N(\widetilde{\theta}, I_p)$$

$$\widehat{\theta} \approx (1 - \epsilon)\theta + \epsilon \widetilde{\theta}$$

$$\widehat{\theta} \approx \theta$$

$$\widehat{\theta} \approx \theta$$

A classifier with hidden layers leads to robustness. Why?

A classifier with hidden layers leads to robustness. Why?

$$\mathsf{JS}_g(\mathbb{P},\mathbb{Q}) = \max_{w \in \mathbb{R}^d} \left[\mathbb{P} \log \frac{1}{1 + e^{-w^T g(X)}} + \mathbb{Q} \log \frac{1}{1 + e^{w^T g(X)}} \right] + \log 4.$$

A classifier with hidden layers leads to robustness. Why?

$$\mathsf{JS}_g(\mathbb{P},\mathbb{Q}) = \max_{w \in \mathbb{R}^d} \left[\mathbb{P} \log \frac{1}{1 + e^{-w^T g(X)}} + \mathbb{Q} \log \frac{1}{1 + e^{w^T g(X)}} \right] + \log 4.$$

Proposition.

$$\mathsf{JS}_g(\mathbb{P},\mathbb{Q}) = 0 \iff \mathbb{P}g(X) = \mathbb{Q}g(X)$$

$$\widehat{\theta} = \underset{\eta \in \mathbb{R}^p}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n \log T(X_i) + E_{\eta} \log(1 - T(X)) \right] + \log 4$$

Theorem [GLYZ18]. For a neural network class \mathcal{T} with at least one hidden layer and appropriate regularization, we have

$$\|\widehat{\theta} - \theta\|^2 \lesssim \begin{cases} \frac{p}{n} + \epsilon^2 & \text{(indicator/sigmoid/ramp)} \\ \frac{p \log p}{n} + \epsilon^2 & \text{(ReLUs+sigmoid features)} \end{cases}$$

with high probability uniformly over $\theta \in \mathbb{R}^p, Q$.

JS-GAN: Adaptation to Unknown Covariance

unknown covariance?

$$X_1, ..., X_n \sim (1 - \epsilon)N(\theta, \Sigma) + \epsilon Q$$

JS-GAN: Adaptation to Unknown Covariance

unknown covariance?

$$X_1, ..., X_n \sim (1 - \epsilon)N(\theta, \Sigma) + \epsilon Q$$

$$(\widehat{\theta}, \widehat{\Sigma}) = \underset{\eta, \Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(\eta, \Gamma)} \log(1 - T(X)) \right]$$

JS-GAN: Adaptation to Unknown Covariance

unknown covariance?

$$X_1, ..., X_n \sim (1 - \epsilon)N(\theta, \Sigma) + \epsilon Q$$

$$(\widehat{\theta}, \widehat{\Sigma}) = \underset{\eta, \Gamma}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \log T(X_i) + \mathbb{E}_{X \sim N(\eta, \Gamma)} \log(1 - T(X)) \right]$$

no need to change the discriminator class

Generalization

Strong Contamination model:

 $X_1, ..., X_n \stackrel{iid}{\sim} P$ for some P satisfying $\mathsf{TV}(P, E(\theta, \Sigma, H)) \leq \epsilon$

$$(\widehat{\theta}, \widehat{\Sigma}, \widehat{H}) = \underset{\eta \in \mathbb{R}^p, \Gamma \in \mathcal{E}_p(M), H \in \mathcal{H}(M')}{\operatorname{argmin}} \max_{T \in \mathcal{T}} \left[\frac{1}{n} \sum_{i=1}^n S(T(X_i), 1) + \mathbb{E}_{X \sim E(\eta, \Gamma, G)} S(T(X), 0) \right]$$

A scoring rule S is regular if both $S(\cdot,0)$ and $S(\cdot,1)$ are real-valued, except possibly that $S(0,1) = -\infty$ or $S(1,0) = -\infty$. The celebrated Savage representation [50] asserts that a regular scoring rule S is proper if and only if there is a convex function $G(\cdot)$, such that

$$\begin{cases} S(t,1) = G(t) + (1-t)G'(t), \\ S(t,0) = G(t) - tG'(t). \end{cases}$$
(10)

Here, G'(t) is a subgradient of G at the point t. Moreover, the statement also holds for strictly proper scoring rules when convex is replaced by strictly convex.

Consistency

Theorem [GYZ19]. For a neural network class \mathcal{T} with at least one hidden layer and appropriate regularization, we have

$$\|\widehat{\theta} - \theta\|^2 \le C\left(\frac{p}{n} \vee \epsilon^2\right),$$

$$\|\widehat{\Sigma} - \Sigma\|_{\text{op}}^2 \le C\left(\frac{p}{n} \vee \epsilon^2\right),$$

Example 1: Log Score and JS-GAN

1. Log Score. The log score is perhaps the most commonly used rule because of its various intriguing properties [31]. The scoring rule with $S(t,1) = \log t$ and $S(t,0) = \log(1-t)$ is regular and strictly proper. Its Savage representation is given by the convex function $G(t) = t \log t + (1-t) \log(1-t)$, which is interpreted as the negative Shannon entropy of Bernoulli(t). The corresponding divergence function $D_{\mathcal{T}}(P,Q)$, according to Proposition 3.1, is a variational lower bound of the Jensen-Shannon divergence

$$\mathsf{JS}(P,Q) = \frac{1}{2} \int \log \left(\frac{dP}{dP + dQ} \right) dP + \frac{1}{2} \int \log \left(\frac{dQ}{dP + dQ} \right) dQ + \log 2.$$

Its sample version (13) is the original GAN proposed by [25] that is widely used in learning distributions of images.

Example 2: Zero-One Score and TV-GAN

2. Zero-One Score. The zero-one score $S(t,1) = 2\mathbb{I}\{t \geq 1/2\}$ and $S(t,0) = 2\mathbb{I}\{t < 1/2\}$ is also known as the misclassification loss. This is a regular proper scoring rule but not strictly proper. The induced divergence function $D_{\mathcal{T}}(P,Q)$ is a variational lower bound of the total variation distance

$$\mathsf{TV}(P,Q) = P\left(\frac{dP}{dQ} \ge 1\right) - Q\left(\frac{dP}{dQ} \ge 1\right) = \frac{1}{2}\int |dP - dQ|.$$

The sample version (13) is recognized as the TV-GAN that is extensively studied by [21] in the context of robust estimation.

Example 3: Quadratic Score and LS-GAN

3. Quadratic Score. Also known as the Brier score [6], the definition is given by $S(t,1) = -(1-t)^2$ and $S(t,0) = -t^2$. The corresponding convex function in the Savage representation is given by G(t) = -t(1-t). By Proposition 2.1, the divergence function (3) induced by this regular strictly proper scoring rule is a variational lower bound of the following divergence function,

$$\Delta(P,Q) = \frac{1}{8} \int \frac{(dP - dQ)^2}{dP + dQ},$$

known as the triangular discrimination. The sample version (5) belongs to the family of least-squares GANs proposed by [39].

Example 4: Boosting Score

4. Boosting Score. The boosting score was introduced by [7] with $S(t,1) = -\left(\frac{1-t}{t}\right)^{1/2}$ and $S(t,0) = -\left(\frac{t}{1-t}\right)^{1/2}$ and has an connection to the AdaBoost algorithm. The corresponding convex function in the Savage representation is given by $G(t) = -2\sqrt{t(1-t)}$. The induced divergence function $D_{\mathcal{T}}(P,Q)$ is thus a variational lower bound of the squared Hellinger distance

$$H^2(P,Q) = \frac{1}{2} \int \left(\sqrt{dP} - \sqrt{dQ}\right)^2.$$

Example 5: Beta Score and new GANs

5. Beta Score. A general Beta family of proper scoring rules was introduced by [7] with $S(t,1) = -\int_t^1 c^{\alpha-1} (1-c)^{\beta} dc$ and $S(t,0) = -\int_0^t c^{\alpha} (1-c)^{\beta-1} dc$ for any $\alpha, \beta > -1$. The log score, the quadratic score and the boosting score are special cases of the Beta score with $\alpha = \beta = 0$, $\alpha = \beta = 1$, $\alpha = \beta = -1/2$. The zero-one score is a limiting case of the Beta score by letting $\alpha = \beta \to \infty$. Moreover, it also leads to asymmetric scoring rules with $\alpha \neq \beta$.

Robust Learning of Gaussian Distributions

Q	n	р	ϵ	TV-GAN	JS-GAN	Dimension Halving	Iterative Filtering
$N(0.5*1_p,I_p)$	50,000	100	.2	0.0953 (0.0064)	0.1144 (0.0154)	0.3247 (0.0058)	0.1472 (0.0071)
$N(0.5*1_p,I_p)$	5,000	100	.2	0.1941 (0.0173)	0.2182 (0.0527)	0.3568 (0.0197)	0.2285 (0.0103)
$N(0.5*1_p,I_p)$	50,000	200	.2	0.1108 (0.0093)	0.1573 (0.0815)	0.3251 (0.0078)	0.1525 (0.0045)
$N(0.5*1_p,I_p)$	50,000	100	.05	0.0913 (0.0527)	0.1390 (0.0050)	0.0814 (0.0056)	0.0530 (0.0052)
$N(5*1_p,I_p)$	50,000	100	.2	2.7721 (0.1285)	0.0534 (0.0041)	0.3229 (0.0087)	0.1471 (0.0059)
$N(0.5*1_p,\Sigma)$	50,000	100	.2	0.1189 (0.0195)	0.1148 (0.0234)	0.3241 (0.0088)	0.1426 (0.0113)
$Cauchy(0.5*1_p)$	50,000	100	.2	0.0738 (0.0053)	0.0525 (0.0029)	0.1045 (0.0071)	0.0633 (0.0042)

Table: Comparison of various robust mean estimation methods. The smallest error of each case is highlighted in bold.

- Dimension Halving: [Lai et al.'16]

 https://github.com/kal2000/AgnosticMeanAndCovarianceCode.
- Iterative Filtering: [Diakonikolas et al.'17]
 https://github.com/hoonose/robust-filter.

Robust Learning of Cauchy Distributions

Table 4: Comparison of various methods of robust location estimation under Cauchy distributions. Samples are drawn from $(1 - \epsilon)$ Cauchy $(0_p, I_p) + \epsilon Q$ with $\epsilon = 0.2, p = 50$ and various choices of Q. Sample size: 50,000. Discriminator net structure: 50-50-25-1. Generator $g_{\omega}(\xi)$ structure: 48-48-32-24-12-1 with absolute value activation function in the output layer.

Contamination Q	JS - $GAN(G_1)$	JS - $GAN(G_2)$	Dimension Halving	Iterative Filtering
Cauchy $(1.5*1_p, I_p)$	0.0664 (0.0065)	0.0743 (0.0103)	0.3529 (0.0543)	0.1244 (0.0114)
$Cauchy(5.0*1_p, I_p)$	0.0480 (0.0058)	0.0540 (0.0064)	0.4855 (0.0616)	0.1687 (0.0310)
Cauchy $(1.5*1_p, 5*I_p)$	0.0754 (0.0135)	0.0742 (0.0111)	0.3726 (0.0530)	0.1220 (0.0112)
Normal $(1.5*1_p, 5*I_p)$	0.0702 (0.0064)	0.0713 (0.0088)	0.3915 (0.0232)	0.1048 (0.0288))

- Dimension Halving: [Lai et al.'16] https://github.com/kal2000/AgnosticMeanAndCovarianceCode.
- Iterative Filtering: [Diakonikolas et al.'17] https://github.com/hoonose/robust-filter.

Discriminator identifies outliers

$$(1 - \epsilon)N(0_p, I_p) + \epsilon Q$$
$$N(5 * 1_p, I_p)$$

- Discriminator helps identify outliers or contaminated samples
- Generator fits uncontaminated portion of true samples

Application: Price of 50 stocks from 2007/01 to 2018/12 Corps are selected by ranking in market capitalization

Log-return. y[i] = log(price_{i+1}/price_{i})

Fit data by Elliptica-GAN.

Apply SVD on scatter.

Dimension reduction on R^2.

Discriminator value distribution from (Elliptical) Generator and real samples. Outliers are chosen from samples larger/ lower than a chosen percentile of Generator distribution

Loading of PCA. First two direction are dominated by few corps —> not robust

Loading of Elliptical Scatter: Comparing with PCA, it's more robust in the sense that it does not totally dominate by Financial company (JPM, GS)

Reference

- Gao, Liu, Yao, Zhu, Robust Estimation and Generative Adversarial Networks, *ICLR 2019*, https://arxiv.org/abs/1810.02030
- Gao, Yao, Zhu, Generative Adversarial Networks for Robust Scatter Estimation: A Proper Scoring Rule Perspective, https://arxiv.org/abs/1903.01944

Thank You

