# Robust Statistics and <br> Generative Adversarial Networks 

Yuan YAO<br>HKUST




## Deep Learning is <br> Notoriously Not Robust!


[Goodfellow et al., 2014]

- Imperceivable adversarial examples are ubiquitous to fail neural networks
- How can one achieve robustness?


## Robust Optimization



- Traditional training:

$$
\min _{\theta} J_{n}\left(\theta, \mathbf{z}=\left(x_{i}, y_{i}\right)_{i=1}^{n}\right)
$$

- e.g. square or cross-entropy loss as negative log-likelihood of logit models
- Robust optimization (Madry et al. ICLR'2018):

$$
\min _{\theta} \max _{\left\|\epsilon_{i}\right\| \leq \delta} J_{n}\left(\theta, \mathbf{z}=\left(x_{i}+\epsilon_{i}, y_{i}\right)_{i=1}^{n}\right)
$$

- robust to any distributions, yet computationally hard


## Distributionally Robust Optimization (DRO)

- Distributional Robust Optimization:

$$
\min _{\theta} \max _{\epsilon} \mathbb{E}_{\mathbf{z} \sim P_{\epsilon} \in \mathcal{D}}\left[J_{n}(\theta, \mathbf{z})\right]
$$

- $\mathcal{D}$ is a set of ambiguous distributions, e.g. Wasserstein ambiguity set

$$
\mathcal{D}=\left\{P_{\epsilon}: W_{2}\left(P_{\epsilon}, \text { uniform distribution }\right) \leq \epsilon\right\}
$$

where DRO may be reduced to regularized maximum likelihood estimates (Shafieezadeh-Abadeh, Esfahani, Kuhn, NIPS'2015) that are convex optimizations and tractable

## Wasserstein DRO and Sqrt-Lasso

Theorem (B., Kang, Murthy (2016)) Suppose that

$$
c\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left\{\begin{array}{cll}
\left\|x-x^{\prime}\right\|_{q}^{2} & \text { if } & y=y^{\prime} \\
\infty & \text { if } & y \neq y^{\prime}
\end{array} .\right.
$$

Then, if $1 / p+1 / q=1$

$$
\max _{P: D_{c}\left(P, P_{n}\right) \leq \delta} E_{P}^{1 / 2}\left(\left(Y-\beta^{T} X\right)^{2}\right)=E_{P_{n}}^{1 / 2}\left[\left(Y-\beta^{T} X\right)^{2}\right]+\sqrt{\delta}\|\beta\|_{p}
$$

Remark 1: This is sqrt-Lasso (Belloni et al. (2011)).
Remark 2: Uses RoPA duality theorem \& "judicious choice of $c(\cdot)$ "

## Certified Robustness of Lasso

Take $q=\infty$ and $p=1$, with

$$
c\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left\{\begin{array}{cll}
\left\|x-x^{\prime}\right\|_{\infty}^{2} & \text { if } & y=y^{\prime} \\
\infty & \text { if } & y \neq y^{\prime}
\end{array}\right.
$$

Then for

$$
P_{n}^{\prime}=\frac{1}{n} \sum_{i} \delta_{x_{i}^{\prime}}
$$

with $\left\|x_{i}-x_{i}^{\prime}\right\|_{\infty} \leq \delta$,

$$
D_{c}\left(P_{n}^{\prime}, P_{n}\right)=\int \pi\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) c\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \leq \delta
$$

for small enough $\delta$ and well-separated $x$ 's. Sqrt-Lasso

$$
\begin{aligned}
& \min _{\beta}\left\{E_{P_{n}}^{1 / 2}\left[\left(Y-\beta^{T} X\right)^{2}\right]+\sqrt{\delta}\|\beta\|_{1}\right\}^{2} \\
= & \min _{\beta} \max _{P: D_{c}\left(P, P_{n}\right) \leq \delta} E_{P}\left(\left(Y-\beta^{T} X\right)^{2}\right)
\end{aligned}
$$

provides a certified robust estimate in terms of Madry's adversarial training, using a convex Wasserstein relaxation.

## TV-neighborhood

- Now how about the TV-uncertainty set?

$$
\mathcal{D}=\left\{P_{\epsilon}: T V\left(P_{\epsilon}, \text { uniform distribution }\right) \leq \epsilon\right\} ?
$$

## Huber's Model

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) P_{\theta}+\epsilon Q
$$

[Huber 1964]

## Huber's Model

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) P_{\theta}+\epsilon Q
$$


[Huber 1964]

## Huber's Model

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) P_{\theta}+\epsilon Q
$$

contamination proportion
parameter of interest

## Huber's Model

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) P_{\theta}+\epsilon Q
$$

parameter of interest

## An Example

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N\left(\theta, I_{p}\right)+\epsilon Q
$$

## An Example

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N\left(\theta, I_{p}\right)+\epsilon Q .
$$

how to estimate?

## Robust Maxmum-Likelihood Does not work!

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N\left(\theta, I_{p}\right)+\epsilon Q
$$

## Robust Maxmum-Likelihood Does not work!

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N\left(\theta, I_{p}\right)+\epsilon Q
$$

$$
\begin{gathered}
\ell(\theta, Q)=\text { negative log-likelihood }=\sum_{i=1}^{\prime \prime}\left(\theta-X_{i}\right)^{2} \\
\sim(1-\epsilon) \mathbb{E}_{\mathcal{N}(\theta)}(\theta-X)^{2}+\epsilon \mathbb{E}_{Q}(\theta-X)^{2}
\end{gathered}
$$

the sample mean

$$
\hat{\theta}_{\text {mean }}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\arg \min _{\theta} \ell(\theta, Q)
$$

$$
\min _{\theta} \max _{Q} \ell(\theta, Q) \geq \max _{Q} \min _{\theta} \ell(\theta, Q)=\max _{Q} \ell\left(\hat{\theta}_{\text {mean }}, Q\right)=\infty
$$

## Medians

## 1. Coordinatewise median

$$
\hat{\theta}=\left(\hat{\theta}_{j}\right), \text { where } \hat{\theta}_{j}=\operatorname{Median}\left(\left\{X_{i j}\right\}_{i=1}^{n}\right) ;
$$

## Medians

## 1. Coordinatewise median

$$
\hat{\theta}=\left(\hat{\theta}_{j}\right), \text { where } \hat{\theta}_{j}=\operatorname{Median}\left(\left\{X_{i j}\right\}_{i=1}^{n}\right) ;
$$

2. Tukey's median

$$
\hat{\theta}=\arg \max _{\eta \in \mathbb{R}^{p}} \min _{\|u\|=1} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}>u^{T} \eta\right\}
$$

## Comparisons

|  | Coordinatewise Median | Tukey's Median |
| :---: | :---: | :---: |
| breakdown point | 1/2 | 1/3 |
| statistical precision (no contamination) | $\frac{p}{n}$ | $\frac{p}{n}$ |
| statistical precision <br> (with contamination) | $\frac{p}{n}+p \epsilon^{2}$ | $\begin{gathered} \frac{p}{n}+\epsilon^{2}: \text { minimax } \\ {[\text { Chen-Gao-Ren'15] }} \end{gathered}$ |
| computational complexity | Polynomial | NP-hard <br> [Amenta et al. '00] |

Note: R-package for Tukey median can not deal with more than 10 dimensions!
[https://github.com/ChenMengie/DepthDescent]

## Multivariate Location Depth

$$
\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}>u^{T} \eta\right\} \wedge \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i} \leq u^{T} \eta\right\}\right\}
$$

## Multivariate Location Depth

$$
\frac{\min _{\| u l=1}\{ }{}\left\{\frac{1}{n} \sum_{i=1}^{n}\left\{u^{T} X_{i}>u^{T} \eta\right\} \wedge \wedge \frac{1}{n} \sum_{i=1}^{n}\left\{u^{T} X_{i} \leq u^{T} \eta\right\}\right\}
$$

## Multivariate Location Depth

$$
\hat{\theta}=\arg \max _{\eta \in \mathbb{R}^{p}} \min _{\|u\|=1}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}>u^{T} \eta\right\} \wedge \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i} \leq u^{T} \eta\right\}\right\}
$$

## Multivariate Location Depth

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\eta \in \mathbb{R}^{p}} \min _{\|u\|=1}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}>u^{T} \eta\right\} \wedge \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i} \leq u^{T} \eta\right\}\right\} \\
& =\arg \max _{\eta \in \mathbb{R}^{p}} \min _{\|u\|=1} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}>u^{T} \eta\right\}
\end{aligned}
$$

[Tukey, 1975]

## Regression Depth

model

$$
y \mid X \sim N\left(X^{T} \beta, \sigma^{2}\right)
$$

## Regression Depth

## model

$$
y \mid X \sim N\left(X^{T} \beta, \sigma^{2}\right)
$$

embedding $\quad X y \mid X \sim N\left(X X^{T} \beta, \sigma^{2} X X^{T}\right)$

## Regression Depth

model

$$
y \mid X \sim N\left(X^{T} \beta, \sigma^{2}\right)
$$

embedding $\quad X y \mid X \sim N\left(X X^{T} \beta, \sigma^{2} X X^{T}\right)$
projection

$$
u^{T} X y \mid X \sim N\left(u^{T} X X^{T} \beta, \sigma^{2} u^{T} X X^{T} u\right)
$$

## Regression Depth

## model

$$
y \mid X \sim N\left(X^{T} \beta, \sigma^{2}\right)
$$

embedding

$$
X y \mid X \sim N\left(X X^{T} \beta, \sigma^{2} X X^{T}\right)
$$

projection

$$
u^{T} X y \mid X \sim N\left(u^{T} X X^{T} \beta, \sigma^{2} u^{T} X X^{T} u\right)
$$

$$
\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}\left(y_{i}-X_{i}^{T} \eta\right)>0\right\} \wedge \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}\left(y_{i}-X_{i}^{T} \eta\right) \leq 0\right\}\right\}
$$

## Regression Depth

## model

$$
y \mid X \sim N\left(X^{T} \beta, \sigma^{2}\right)
$$

$$
X y \mid X \sim N\left(X X^{T} \beta, \sigma^{2} X X^{T}\right)
$$

projection

$$
u^{T} X y \mid X \sim N\left(u^{T} X X^{T} \beta, \sigma^{2} u^{T} X X^{T} u\right)
$$

$$
\min _{u \in \mathbb{R}^{p}}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}\left(y_{i}-X_{i}^{T} \eta\right)>0\right\} \wedge \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}\left(y_{i}-X_{i}^{T} \eta\right) \leq 0\right\}\right\}
$$

## Regression Depth

model

$$
y \mid X \sim N\left(X^{T} \beta, \sigma^{2}\right)
$$

$$
X y \mid X \sim N\left(X X^{T} \beta, \sigma^{2} X X^{T}\right)
$$

projection

$$
u^{T} X y \mid X \sim N\left(u^{T} X X^{T} \beta, \sigma^{2} u^{T} X X^{T} u\right)
$$

$\hat{\beta}=\underset{\eta \in \mathbb{R}^{p}}{\operatorname{argmax}} \min _{u \in \mathbb{R}^{p}}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}\left(y_{i}-X_{i}^{T} \eta\right)>0\right\} \wedge \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}\left(y_{i}-X_{i}^{T} \eta\right) \leq 0\right\}\right\}$

## Regression Depth

model

$$
y \mid X \sim N\left(X^{T} \beta, \sigma^{2}\right)
$$

$$
X y \mid X \sim N\left(X X^{T} \beta, \sigma^{2} X X^{T}\right)
$$

projection

$$
u^{T} X y \mid X \sim N\left(u^{T} X X^{T} \beta, \sigma^{2} u^{T} X X^{T} u\right)
$$

$\hat{\beta}=\underset{\eta \in \mathbb{R}^{p}}{\operatorname{argmax}} \min _{u \in \mathbb{R}^{p}}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}\left(y_{i}-X_{i}^{T} \eta\right)>0\right\} \wedge \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i}\left(y_{i}-X_{i}^{T} \eta\right) \leq 0\right\}\right\}$

# Tukey's depth is not a special case of regression depth. 

## Multi-task Regression Depth

$(X, Y) \in \mathbb{R}^{p} \times \mathbb{R}^{m} \sim \mathbb{P}$

## Multi-task Regression Depth

$$
(X, Y) \in \mathbb{R}^{p} \times \mathbb{R}^{m} \sim \mathbb{P}
$$

$$
B \in \mathbb{R}^{p \times m}
$$

## Multi-task Regression Depth

$$
(X, Y) \in \mathbb{R}^{p} \times \mathbb{R}^{m} \sim \mathbb{P}
$$

$$
B \in \mathbb{R}^{p \times m}
$$

## population version:

$$
\mathcal{D}_{\mathcal{U}}(B, \mathbb{P})=\inf _{U \in \mathcal{U}} \mathbb{P}\left\{\left\langle U^{T} X, Y-B^{T} X\right\rangle \geq 0\right\}
$$

## Multi-task Regression Depth

$$
(X, Y) \in \mathbb{R}^{p} \times \mathbb{R}^{m} \sim \mathbb{P}
$$

$$
B \in \mathbb{R}^{p \times m}
$$

population version:

$$
\begin{aligned}
\mathcal{D}_{\mathcal{U}}(B, \mathbb{P})= & \inf _{U \in \mathcal{U}} \mathbb{P}\left\{\left\langle U^{T} X, Y-B^{T} X\right\rangle \geq 0\right\} \\
& \text { empirical version: }
\end{aligned}
$$

$$
\mathcal{D}_{\mathcal{U}}\left(B,\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}\right)=\inf _{U \in \mathcal{U}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{\left\langle U^{T} X_{i}, Y_{i}-B^{T} X_{i}\right\rangle \geq 0\right\}
$$

## Multi-task Regression Depth

$$
(X, Y) \in \mathbb{R}^{p} \times \mathbb{R}^{m} \sim \mathbb{P}
$$

$$
B \in \mathbb{R}^{p \times m}
$$

population version:

$$
\begin{aligned}
\mathcal{D}_{\mathcal{U}}(B, \mathbb{P})= & \inf _{U \in \mathcal{U}} \mathbb{P}\left\{\left\langle U^{T} X, Y-B^{T} X\right\rangle \geq 0\right\} \\
& \text { empirical version: } \\
\mathcal{D}_{\mathcal{U}}\left(B,\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}\right)= & \inf _{U \in \mathcal{U}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{\left\langle U^{T} X_{i}, Y_{i}-B^{T} X_{i}\right\rangle \geq 0\right\}
\end{aligned}
$$

## Multi-task Regression Depth

$$
\mathcal{D}_{\mathcal{U}}(B, \mathbb{P})=\inf _{U \in \mathcal{U}} \mathbb{P}\left\{\left\langle U^{T} X, Y-B^{T} X\right\rangle \geq 0\right\}
$$

## Multi-task Regression Depth

$$
\mathcal{D}_{\mathcal{U}}(B, \mathbb{P})=\inf _{U \in \mathcal{U}} \mathbb{P}\left\{\left\langle U^{T} X, Y-B^{T} X\right\rangle \geq 0\right\}
$$

$$
p=1, X=1 \in \mathbb{R}
$$

$$
\mathcal{D}_{\mathcal{U}}(b, \mathbb{P})=\inf _{u \in \mathcal{U}} \mathbb{P}\left\{u^{T}(Y-b) \geq 0\right\}
$$

## Multi-task Regression Depth

$$
\mathcal{D}_{\mathcal{U}}(B, \mathbb{P})=\inf _{U \in \mathcal{U}} \mathbb{P}\left\{\left\langle U^{T} X, Y-B^{T} X\right\rangle \geq 0\right\}
$$

$$
p=1, X=1 \in \mathbb{R}
$$

$$
\mathcal{D}_{\mathcal{U}}(b, \mathbb{P})=\inf _{u \in \mathcal{U}} \mathbb{P}\left\{u^{T}(Y-b) \geq 0\right\}
$$

$$
m=1
$$

$$
\mathcal{D}_{\mathcal{U}}(\beta, \mathbb{P})=\inf _{U \in \mathcal{U}} \mathbb{P}\left\{u^{T} X\left(y-\beta^{T} X\right) \geq 0\right\}
$$

## Multi-task Regression Depth

## Proposition. For any $\delta>0$,

$$
\sup _{B \in \mathbb{R}^{p \times m}}\left|\mathcal{D}\left(B, \mathbb{P}_{n}\right)-\mathcal{D}(B, \mathbb{P})\right| \leq C \sqrt{\frac{p m}{n}}+\sqrt{\frac{\log (1 / \delta)}{2 n}},
$$

with probability at least $1-2 \delta$.

## Multi-task Regression Depth

## Proposition. For any $\delta>0$,

$$
\sup _{B \in \mathbb{R}^{p \times m}}\left|\mathcal{D}\left(B, \mathbb{P}_{n}\right)-\mathcal{D}(B, \mathbb{P})\right| \leq C \sqrt{\frac{p m}{n}}+\sqrt{\frac{\log (1 / \delta)}{2 n}},
$$

## with probability at least $1-2 \delta$.

## Proposition.

$$
\sup _{B, Q}\left|\mathcal{D}\left(B,\left(1-\epsilon P_{B^{*}}\right)+\epsilon Q\right)-\mathcal{D}\left(B, P_{B^{*}}\right)\right| \leq \epsilon
$$

## Multi-task Regression Depth

$(X, Y) \sim P_{B}$

## Multi-task Regression Depth

$$
(X, Y) \sim P_{B}: X \sim N(0, \Sigma), \quad Y \mid X \sim N\left(B^{T} X, \sigma^{2} I_{m}\right)
$$

## Multi-task Regression Depth

$$
\begin{gathered}
(X, Y) \sim P_{B}: X \sim N(0, \Sigma), \quad Y \mid X \sim N\left(B^{T} X, \sigma^{2} I_{m}\right) \\
\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \sim(1-\epsilon) P_{B}+\epsilon Q
\end{gathered}
$$

## Multi-task Regression Depth

$$
\begin{gathered}
(X, Y) \sim P_{B}: X \sim N(0, \Sigma), \quad Y \mid X \sim N\left(B^{T} X, \sigma^{2} I_{m}\right) \\
\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \sim(1-\epsilon) P_{B}+\epsilon Q
\end{gathered}
$$

Theorem [G17]. For some $C>0$,

$$
\begin{gathered}
\operatorname{Tr}\left((\widehat{B}-B)^{T} \Sigma(\widehat{B}-B)\right) \leq C \sigma^{2}\left(\frac{p m}{n} \vee \epsilon^{2}\right), \\
\|\widehat{B}-B\|_{\mathrm{F}}^{2} \leq C \frac{\sigma^{2}}{\kappa^{2}}\left(\frac{p m}{n} \vee \epsilon^{2}\right),
\end{gathered}
$$

with high probability uniformly over $B, Q$.

## Covariance Matrix

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N(0, \Sigma)+\epsilon Q .
$$

## Covariance Matrix

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N(0, \Sigma)+\epsilon Q
$$

how to estimate ?

## Covariance Matrix



## Covariance Matrix

## Covariance Matrix

$$
\begin{aligned}
& \mathcal{D}\left(\Gamma,\left\{X_{i}\right\}_{i=1}^{n}\right)=\frac{\min }{\| u \mid=1} \min \left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{\left|u^{T} X_{i}\right|^{2} \geq u^{T} \Gamma u\right\}, \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{\left|u^{T} X_{i}\right|^{2}<u^{T} \Gamma u\right\}\right\} \\
& \hat{\Gamma}=\arg \max _{\Gamma \geq 0} \mathcal{D}\left(\Gamma,\left\{X_{i}\right\}_{i=1}^{n}\right) \quad \hat{\Sigma}=\hat{\Gamma} / \beta
\end{aligned}
$$

## Covariance Matrix

$$
\begin{aligned}
& \mathcal{D}\left(\Gamma,\left\{X_{i}\right\}_{i=1}^{n}\right)=\min _{\|u\|=1}^{\min }\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I \{}\left\{\left.u^{T} X_{i}\right|^{2} \geq u^{T} \Gamma u\right\}, \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{\left|u^{T} X_{i}\right|^{2}<u^{T} \Gamma u\right\}\right\} \\
& \hat{\Gamma}=\arg \max _{\Gamma \geq 0} \mathcal{D}\left(\Gamma,\left\{X_{i}\right\}_{i=1}^{n}\right) \quad \hat{\Sigma}=\hat{\Gamma} / \beta
\end{aligned}
$$

## Theorem [CGR15]. For some $C>0$,

$$
\|\hat{\Sigma}-\Sigma\|_{\mathrm{op}}^{2} \leq C\left(\frac{p}{n} \vee \epsilon^{2}\right)
$$

with high probability uniformly over $\Sigma, Q$.

## Summary

| mean | $\\|\cdot\\|^{2}$ | $\frac{p}{n} \vee \epsilon^{2}$ |
| :---: | :---: | :---: |
| reduced rank <br> regression | $\\|\cdot\\|_{\mathrm{F}}^{2}$ | $\frac{\sigma^{2}}{\kappa^{2}} \frac{r(p+m)}{n} \vee \frac{\sigma^{2}}{\kappa^{2}} \epsilon^{2}$ |
| Gaussian graphical <br> model | $\\|\cdot\\|_{\ell_{1}}^{2}$ | $\frac{s^{2} \log (e p / s)}{n} \vee s \epsilon^{2}$ |
| covariance matrix | $\\|\cdot\\|_{\mathrm{op}}^{2}$ | $\frac{p}{n} \vee \epsilon^{2}$ |
| sparse PCA | $\\|\cdot\\|_{\mathrm{F}}^{2}$ | $\frac{s \log (e p / s)}{n \lambda^{2}} \vee \frac{\epsilon^{2}}{\lambda^{2}}$ |

## Summary

| mean | $\\|\cdot\\|^{2}$ | $\frac{p}{n} \sqrt{ } \epsilon^{2}$ |
| :---: | :---: | :---: |
| reduced rank regression | $\\|\cdot\\|_{F}^{2}$ | $\frac{\sigma^{2}}{\kappa^{2}} \frac{r(p+m)}{n} \sqrt{\frac{\sigma^{2}}{\kappa^{2}} \epsilon^{2}}$ |
| Gaussian graphical model | $\\|\cdot\\|_{\ell_{1}}^{2}$ | $\frac{s^{2} \log (e p / s)}{n} \vee s \epsilon^{2}$ |
| covariance matrix | $\\|\cdot\\|_{\text {op }}^{2}$ | $\frac{p}{n} \vee \epsilon^{2}$ |
| sparse PCA | $\\|\cdot\\|_{F}^{2}$ | $\frac{s \log (e p / s)}{n \lambda^{2}} \curlyvee \frac{\epsilon^{2}}{\lambda^{2}}$ |

## Computation

## Computational Challenges

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N\left(\theta, I_{p}\right)+\epsilon Q .
$$

# Computational Challenges 

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N\left(\theta, I_{p}\right)+\epsilon Q
$$

Lai, Rao, Vempala
Diakonikolas, Kamath, Kane, Li, Moitra, Stewart Balakrishnan, Du, Singh

# Computational Challenges 

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N\left(\theta, I_{p}\right)+\epsilon Q
$$

## Lai, Rao, Vempala Diakonikolas, Kamath, Kane, Li, Moitra, Stewart Balakrishnan, Du, Singh

- Polynomial algorithms are proposed [Diakonikolas et al.'16, Lai et al. 16] of minimax optimal statistical precision
- needs information on second or higher order of moments
- some priori knowledge about $\epsilon$


## Advantages of Tukey Median

## Advantages of Tukey Median

- A well-defined objective function


## Advantages of Tukey Median

- A well-defined objective function
- Adaptive to $\epsilon$ and $\Sigma$


## Advantages of Tukey Median

- A well-defined objective function
- Adaptive to $\epsilon$ and $\Sigma$
- Optimal for any elliptical distribution

A practically good algorithm?

## Generative Adversarial Networks [Goodfellow et al. 2014]



Note: R-package for Tukey median can not deal with more than 10 dimensions [https://github.com/ChenMengjie/ DepthDescent]

## Robust Learning of Cauchy Distributions

Table 4: Comparison of various methods of robust location estimation under Cauchy distributions. Samples are drawn from $(1-\epsilon)$ Cauchy $\left(0_{p}, I_{p}\right)+\epsilon Q$ with $\epsilon=0.2, p=50$ and various choices of $Q$. Sample size: 50,000. Discriminator net structure: 50-50-25-1. Generator $g_{\omega}(\xi)$ structure: 48-48-32-24-12-1 with absolute value activation function in the output layer.

| Contamination $Q$ | JS-GAN $\left(G_{1}\right)$ | JS-GAN $\left(G_{2}\right)$ | Dimension Halving | Iterative Filtering |
| :---: | :---: | :---: | :---: | :---: |
| Cauchy $\left(1.5 * 1_{p}, I_{p}\right)$ | $\mathbf{0 . 0 6 6 4}(\mathbf{0 . 0 0 6 5})$ | $0.0743(0.0103)$ | $0.3529(0.0543)$ | $0.1244(0.0114)$ |
| Cauchy $\left(5.0 * 1_{p}, I_{p}\right)$ | $\mathbf{0 . 0 4 8 0 ( 0 . 0 0 5 8 )}$ | $0.0540(0.0064)$ | $0.4855(0.0616)$ | $0.1687(0.0310)$ |
| Cauchy $\left(1.5 * 1_{p}, 5 * I_{p}\right)$ | $0.0754(0.0135)$ | $\mathbf{0 . 0 7 4 2}(\mathbf{( 0 . 0 1 1 1 )}$ | $0.3726(0.0530)$ | $0.1220(0.0112)$ |
| Normal $\left(1.5 * 1_{p}, 5 * I_{p}\right)$ | $\mathbf{0 . 0 7 0 2}(\mathbf{0 . 0 0 6 4})$ | $0.0713(0.0088)$ | $0.3915(0.0232)$ | $0.1048(0.0288))$ |

- Dimension Halving: [Lai et al.'16] https://github.com/kal2000/AgnosticMeanAndCovarianceCode.
- Iterative Filtering: [Diakonikolas et al.'17] https://github.com/hoonose/robust-filter.


## f-GAN

Given a strictly convex function $f$ that satisfies $f(1)=0$, the $f$-divergence between two probability distributions $P$ and $Q$ is defined by

$$
\begin{equation*}
D_{f}(P \| Q)=\int f\left(\frac{p}{q}\right) d Q \tag{8}
\end{equation*}
$$

Let $f^{*}$ be the convex conjugate of $f$. A variational lower bound of (8) is

$$
\begin{equation*}
D_{f}(P \| Q) \geq \sup _{T \in \mathcal{T}}\left[\mathbb{E}_{P} T(X)-\mathbb{E}_{Q} f^{*}(T(X))\right] \tag{9}
\end{equation*}
$$

where equality holds whenever the class $\mathcal{T}$ contains the function $f^{\prime}(p / q)$.
[Nowozin-Cseke-Tomioka'16] f-GAN minimizes the variational lower bound (9)

$$
\begin{equation*}
\widehat{P}=\underset{Q \in \mathcal{Q}}{\arg \min } \sup _{T \in \mathcal{T}}\left[\frac{1}{n} \sum_{i=1}^{n} T\left(X_{i}\right)-\mathbb{E}_{Q} f^{*}(T(X))\right] \tag{10}
\end{equation*}
$$

with i.i.d. observations $X_{1}, \ldots, X_{n} \sim P$.

## From f-GAN to Tukey's Median: f-learning

Consider the special case

$$
\begin{equation*}
\mathcal{T}=\left\{f^{\prime}\left(\frac{\widetilde{q}}{q}\right): \widetilde{q} \in \widetilde{\mathcal{Q}}\right\} \tag{11}
\end{equation*}
$$

which is tight if $P \in \widetilde{\mathcal{Q}}$. The sample version leads to the following $f$-learning

$$
\begin{equation*}
\widehat{P}=\underset{Q \in \mathcal{Q}}{\arg \min } \sup _{\widetilde{Q} \in \widetilde{\mathcal{Q}}}\left[\frac{1}{n} \sum_{i=1}^{n} f^{\prime}\left(\frac{\widetilde{q}\left(X_{i}\right)}{q\left(X_{i}\right)}\right)-\mathbb{E}_{Q} f^{*}\left(f^{\prime}\left(\frac{\widetilde{q}(X)}{q(X)}\right)\right)\right] . \tag{12}
\end{equation*}
$$

- If $f(x)=x \log x, \mathcal{Q}=\widetilde{\mathcal{Q}},(12) \Rightarrow$ Maximum Likelihood Estimate
- If $f(x)=(x-1)+$, then $D_{f}(P \| Q)=\frac{1}{2} \int|p-q|$ is the TV-distance, $f^{*}(t)=t \mathbb{I}\{0 \leq t \leq 1\}, f-G A N \Rightarrow$ TV-GAN
- $\mathcal{Q}=\left\{N\left(\eta, I_{p}\right): \eta \in \mathbb{R}^{p}\right\}$ and $\widetilde{\mathcal{Q}}=\left\{N\left(\widetilde{\eta}, I_{p}\right):\|\widetilde{\eta}-\eta\| \leq r\right\},(12) \stackrel{r \rightarrow 0}{\Rightarrow}$

Tukey's Median

## f-Learning

## f-Learning

f-divergence $\quad D_{f}(P \| Q)=\int f\left(\frac{p}{q}\right) d Q$

## f-Learning

f-divergence $\quad D_{f}(P \| Q)=\int f\left(\frac{p}{q}\right) d Q$

$$
f(u)=\sup \left(t u-f^{*}(t)\right)
$$

## f-Learning

f-divergence $\quad D_{f}(P \| Q)=\int f\left(\frac{p}{q}\right) d Q$

## variational <br> $=\sup _{T}\left[\mathbb{E}_{X \sim P} T(X)-\mathbb{E}_{X \sim Q} f^{*}(T(X))\right]$

## f-Learning

f-divergence $\quad D_{f}(P \| Q)=\int f\left(\frac{p}{q}\right) d Q$

$$
\begin{aligned}
& \text { variational }=\sup _{T}\left[\mathbb{E}_{X \sim P} T(X)-\mathbb{E}_{X \sim Q} f^{*}(T(X))\right]
\end{aligned}
$$

optimal T

$$
T(x)=f^{\prime}\left(\frac{p(x)}{q(x)}\right)
$$

## f-Learning

f-divergence $\quad D_{f}(P \| Q)=\int f\left(\frac{p}{q}\right) d Q$

## variational <br> $$
=\sup _{T}\left[\mathbb{E}_{X \sim P} T(X)-\mathbb{E}_{X \sim Q} f^{*}(T(X))\right]
$$

$$
=\sup _{\tilde{Q}}\left\{\mathbb{E}_{X \sim P} f^{\prime}\left(\frac{d \tilde{Q}(X)}{d Q(X)}\right)-\mathbb{E}_{X \sim Q} f^{*}\left(f^{\prime}\left(\frac{d \tilde{Q}(X)}{d Q(X)}\right)\right)\right\}
$$

## f-Learning

$$
\begin{aligned}
& \max _{T \in \mathcal{T}}\left\{\frac{1}{n} \sum_{i=1}^{n} T\left(X_{i}\right)-\int f^{*}(T) d Q\right\} \\
& \max _{\tilde{Q} \in \mathcal{Q}}\left\{\frac{1}{n} \sum_{i=1}^{n} f^{\prime}\left(\frac{\tilde{q}\left(X_{i}\right)}{q\left(X_{i}\right)}\right)-\int f^{*}\left(f^{\prime}\left(\frac{\tilde{q}}{q}\right)\right) d Q\right\}
\end{aligned}
$$

## f-Learning

$$
\begin{aligned}
& \underset{\substack{\text { min } \\
<\max \\
\max }}{ }\left\{\frac{1}{n} \sum_{n=1}^{n} T\left(X_{i}\right)-\int f^{*}(T) d Q\right\}
\end{aligned}
$$

## f-Learning

f-GAN $\quad \min _{Q \in \mathcal{Q}} \max _{T \in \mathcal{T}}\left\{\frac{1}{n} \sum_{i=1}^{n} T\left(X_{i}\right)-\int f^{*}(T) d Q\right\}$
f-Learning $\min _{Q \in \mathcal{Q}} \max _{\tilde{Q} \in \tilde{Q}}\left\{\frac{1}{n} \sum_{i=1}^{n} f^{\prime}\left(\frac{\tilde{q}\left(X_{i}\right)}{q\left(X_{i}\right)}\right)-\int f^{*}\left(f^{\prime}\left(\frac{\tilde{q}}{q}\right)\right) d Q\right\}$

## f-Learning

f-GAN $\min _{Q \in \mathcal{Q} T \in \mathcal{T}}\left\{\frac{1}{n} \sum_{i=1}^{n} T\left(X_{i}\right)-\int f^{*}(T) d Q\right\}$
f-Learning $\min _{\mathcal{Q} \in \mathcal{Q}} \max _{\tilde{Q} \in \tilde{Q}}\left\{\frac{1}{n} \sum_{i=1}^{n} f^{\prime}\left(\frac{\tilde{q}\left(X_{i}\right)}{q\left(X_{i}\right)}\right)-\int f^{*}\left(f^{\prime}\left(\frac{\tilde{q}}{q}\right)\right) d Q\right\}$
[Nowozin, Cseke, Tomioka]

## f-Learning

|  |  |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |

## f-Learning

|  |  |  |
| :--- | :--- | :--- |
| Jensen-Shannon | $f(x)=x \log x-(x+1) \log (x+1)$ | GAN |
|  |  |  |
|  |  |  |
|  |  |  |

[Goodfellow et al.

## f-Learning

| Jensen-Shannon | $f(x)=x \log x-(x+1) \log (x+1)$ | GAN |
| :---: | :---: | :---: |
| Kullback-Leibler | $f(x)=x \log x$ | MLE |
|  |  |  |
|  |  |  |

[Goodfellow et al.

## f-Learning

| Jensen-Shannon | $f(x)=x \log x-(x+1) \log (x+1)$ | GAN |
| :---: | :---: | :---: |
| Kullback-Leibler | $f(x)=x \log x$ | MLE |
| Hellinger Squared | $f(x)=2-2 \sqrt{x}$ | rho |
|  |  |  |

[Goodfellow et al., Baraud and Birge]

## f-Learning

| Jensen-Shannon | $f(x)=x \log x-(x+1) \log (x+1)$ | GAN |
| :---: | :---: | :---: |
| Kullback-Leibler | $f(x)=x \log x$ | MLE |
| Hellinger Squared | $f(x)=2-2 \sqrt{x}$ | rho |
| Total Variation | $f(x)=(x-1)_{+}$ | depth |

[Goodfellow et al., Baraud and Birge]

## TV-Learning

## TV-Learning

$$
\min _{Q \in \mathcal{Q}} \max _{\tilde{Q} \in \tilde{\mathcal{Q}}}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{\frac{\tilde{q}\left(X_{i}\right)}{q\left(X_{i}\right)} \geq 1\right\}-Q\left(\frac{\tilde{q}}{q} \geq 1\right)\right\}
$$

$$
\mathcal{Q}=\left\{N\left(\theta, I_{p}\right): \theta \in \mathbb{R}^{p}\right\} \quad \tilde{\mathcal{Q}}=\left\{N\left(\tilde{\theta}, I_{p}\right): \tilde{\theta} \in \mathcal{N}_{r}(\theta)\right\}
$$

## TV-Learning

$$
\min _{Q \in \mathcal{Q}} \max _{\tilde{Q} \in \tilde{\mathcal{Q}}}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{\frac{\tilde{q}\left(X_{i}\right)}{q\left(X_{i}\right)} \geq 1\right\}-Q\left(\frac{\tilde{q}}{q} \geq 1\right)\right\}
$$

$$
\mathcal{Q}=\left\{N\left(\theta, I_{p}\right): \theta \in \mathbb{R}^{p}\right\} \quad \tilde{\mathcal{Q}}=\left\{N\left(\tilde{\theta}, I_{p}\right): \tilde{\theta} \in \mathcal{N}_{r}(\theta)\right\}
$$

$$
r \rightarrow 0
$$

## TV-Learning

$$
\min _{Q \in \mathcal{Q}} \max _{\tilde{Q} \in \tilde{\mathcal{Q}}}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{\frac{\tilde{q}\left(X_{i}\right)}{q\left(X_{i}\right)} \geq 1\right\}-Q\left(\frac{\tilde{q}}{q} \geq 1\right)\right\}
$$

$$
\mathcal{Q}=\left\{N\left(\theta, I_{p}\right): \theta \in \mathbb{R}^{p}\right\} \quad \tilde{\mathcal{Q}}=\left\{N\left(\tilde{\theta}, I_{p}\right): \tilde{\theta} \in \mathcal{N}_{r}(\theta)\right\}
$$

Tukey depth $\max _{\theta \in \mathbb{R}} \min _{\|u\|=1} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{u^{T} X_{i} \geq u^{T} \theta\right\}$

## TV-Learning

## TV-Learning

$$
\min _{Q \in \mathcal{Q}} \max _{\tilde{Q} \in \tilde{\mathcal{Q}}}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{\frac{\tilde{q}\left(X_{i}\right)}{q\left(X_{i}\right)} \geq 1\right\}-Q\left(\frac{\tilde{q}}{q} \geq 1\right)\right\}
$$

$$
\mathcal{Q}=\left\{N(0, \Sigma): \Sigma \in \mathbb{R}^{p \times p}\right\} \quad \tilde{\mathcal{Q}}=\left\{N(0, \tilde{\Sigma}): \tilde{\Sigma}=\Sigma+r u u^{T},\|u\|=1\right\}
$$

## TV-Learning

$$
\min _{Q \in \mathcal{Q}} \max _{\tilde{Q} \in \tilde{\mathcal{Q}}}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{\frac{\tilde{q}\left(X_{i}\right)}{q\left(X_{i}\right)} \geq 1\right\}-Q\left(\frac{\tilde{q}}{q} \geq 1\right)\right\}
$$

$$
\mathcal{Q}=\left\{N(0, \Sigma): \Sigma \in \mathbb{R}^{p \times p}\right\} \quad \tilde{\mathcal{Q}}=\left\{N(0, \tilde{\Sigma}): \tilde{\Sigma}=\Sigma+r u u^{T},\|u\|=1\right\}
$$

## TV-Learning

$$
\min _{Q \in \mathcal{Q}} \max _{\tilde{Q} \in \tilde{\mathcal{Q}}}\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{\frac{\tilde{q}\left(X_{i}\right)}{q\left(X_{i}\right)} \geq 1\right\}-Q\left(\frac{\tilde{q}}{q} \geq 1\right)\right\}
$$

$$
\mathcal{Q}=\left\{N(0, \Sigma): \Sigma \in \mathbb{R}^{p \times p}\right\} \quad \tilde{\mathcal{Q}}=\left\{N(0, \tilde{\Sigma}): \tilde{\Sigma}=\Sigma+r u u^{T},\|u\|=1\right\}
$$

## (related to)

$$
r \rightarrow 0
$$

matrix depth

deep learning community

## f-Learning f-GAN

practically good algorithms
theoretical foundation

f-Learning f-GAN
practically good algorithms

## TV-GAN

$$
\widehat{\theta}=\underset{\eta}{\operatorname{argmin}} \sup _{w, b}\left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+e^{-w^{T} X_{i}-b}}-E_{\eta} \frac{1}{1+e^{-w^{T} X-b}}\right]
$$

## TV-GAN

## TV-GAN

logistic regression classifier

## TV-GAN

$$
\widehat{\theta}=\underset{\eta, b}{\operatorname{argmin}} \sup _{w, b}\left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+e^{-w^{T} X_{i}-b}}-E_{\eta} \frac{1}{1+e^{-w^{T} X-b}}\right]
$$

logistic regression classifier

Theorem [GLYZ18]. For some $C>0$,

$$
\|\widehat{\theta}-\theta\|^{2} \leq C\left(\frac{p}{n} \vee \epsilon^{2}\right)
$$

with high probability uniformly over $\theta \in \mathbb{R}^{p}, Q$.

## TV-GAN rugged landscape!




Figure: Heatmaps of the landscape of $F(\eta, w)=\sup _{b}\left[E_{P} \operatorname{sigmoid}(w X+b)-E_{N(\eta, 1)} \operatorname{sigmoid}(w X+b)\right]$, where $b$ is maximized out for visualization. Left: samples are drawn from $P=(1-\epsilon) N(1,1)+\epsilon N(1.5,1)$ with $\epsilon=0.2$. Right: samples are drawn from $P=(1-\epsilon) N(1,1)+\epsilon N(10,1)$ with $\epsilon=0.2$. Left: the landscape is good in the sense that no matter whether we start from the left-top area or the right-bottom area of the heatmap, gradient ascent on $\eta$ does not consistently increase or decrease the value of $\eta$. This is because the signal becomes weak when it is close to the saddle point around $\eta=1$. Right: it is clear that $\tilde{F}(w)=F(\eta, w)$ has two local maxima for a given $\eta$, achieved at $w=+\infty$ and $w=-\infty$. In fact, the global maximum for $\tilde{F}(w)$ has a phase transition from $w=+\infty$ to $w=-\infty$ as $\eta$ grows. For example, the maximum is achieved at $w=+\infty$ when $\eta=1$ (blue solid) and is achieved at $w=-\infty$ when $\eta=5$ (red solid). Unfortunately, even if we initialize with $\eta_{0}=1$ and $w_{0}>0$, gradient ascents on $\eta$ will only increase the value of $\eta$ (green dash), and thus as long as the discriminator cannot reach the global maximizer, $w$ will be stuck in the positive half space $\{w: w>0\}$ and further increase the value of $\eta$.

## The Original JS-GAN

[Goodfellow et al. 2014] For $f(x)=x \log x-(x+1) \log \frac{x+1}{2}$,

$$
\begin{equation*}
\widehat{\theta}=\underset{\eta \in \mathbb{R}^{p}}{\arg \min } \max _{D \in \mathcal{D}}\left[\frac{1}{n} \sum_{i=1}^{n} \log D\left(X_{i}\right)+\mathbb{E}_{\mathcal{N}\left(\eta, l_{p}\right)} \log (1-D(X))\right]+\log 4 \tag{15}
\end{equation*}
$$

What are $\mathcal{D}$, the class of discriminators?

- Single layer (no hidden layer):

$$
\mathcal{D}=\left\{D(x)=\operatorname{sigmoid}\left(w^{\top} x+b\right): w \in \mathbb{R}^{p}, b \in \mathbb{R}\right\}
$$

- One-hidden or Multiple layer:

$$
\mathcal{D}=\left\{D(x)=\operatorname{sigmoid}\left(w^{\top} g(X)\right)\right\}
$$

## JS-GAN

$$
\widehat{\theta}=\underset{\eta \in \mathbb{R}^{p}}{\operatorname{argmin}} \max _{T \in \mathcal{T}}\left[\frac{1}{n} \sum_{i=1}^{n} \log T\left(X_{i}\right)+E_{\eta} \log (1-T(X))\right]+\log 4
$$

## JS-GAN

$$
\widehat{\theta}=\underset{\eta \in \mathbb{R}^{p}}{\operatorname{argmin}} \max _{T \in \mathcal{T}}\left[\frac{1}{n} \sum_{i=1}^{n} \log T\left(X_{i}\right)+E_{\eta} \log (1-T(X))\right]+\log 4
$$

## numerical experiment

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N\left(\theta, I_{p}\right)+\epsilon N\left(\widetilde{\theta}, I_{p}\right)
$$

## JS-GAN

$$
\widehat{\theta}=\underset{\eta \in \mathbb{R}^{p}}{\operatorname{argmin}} \max _{T \in \mathcal{T}}\left[\frac{1}{n} \sum_{i=1}^{n} \log T\left(X_{i}\right)+E_{\eta} \log (1-T(X))\right]+\log 4
$$

## numerical experiment

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N\left(\theta, I_{p}\right)+\epsilon N\left(\widetilde{\theta}, I_{p}\right)
$$



## JS-GAN

$$
\widehat{\theta}=\underset{\eta \in \mathbb{R}^{p}}{\operatorname{argmin}} \max _{T \in \mathcal{T}}\left[\frac{1}{n} \sum_{i=1}^{n} \log T\left(X_{i}\right)+E_{\eta} \log (1-T(X))\right]+\log 4
$$

## numerical experiment

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N\left(\theta, I_{p}\right)+\epsilon N\left(\widetilde{\theta}, I_{p}\right)
$$


$\widehat{\theta} \approx(1-\epsilon) \theta+\epsilon \widetilde{\theta}$

## JS-GAN

$$
\widehat{\theta}=\underset{\eta \in \mathbb{R}^{p}}{\operatorname{argmin}} \max _{T \in \mathcal{T}}\left[\frac{1}{n} \sum_{i=1}^{n} \log T\left(X_{i}\right)+E_{\eta} \log (1-T(X))\right]+\log 4
$$

## numerical experiment

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N\left(\theta, I_{p}\right)+\epsilon N\left(\widetilde{\theta}, I_{p}\right)
$$



$\widehat{\theta} \approx \theta$

$\widehat{\theta} \approx \theta$
$\widehat{\theta} \approx(1-\epsilon) \theta+\epsilon \widetilde{\theta}$
$\checkmark$

## JS-GAN

A classifier with hidden layers leads to robustness. Why?

## JS-GAN

A classifier with hidden layers leads to robustness. Why?

$$
\mathrm{JS}_{g}(\mathbb{P}, \mathbb{Q})=\max _{w \in \mathbb{R}^{d}}\left[\mathbb{P} \log \frac{1}{1+e^{-w^{T} g(X)}}+\mathbb{Q} \log \frac{1}{1+e^{w^{T} g(X)}}\right]+\log 4 .
$$

## JS-GAN

A classifier with hidden layers leads to robustness. Why?

$$
\mathrm{JS}_{g}(\mathbb{P}, \mathbb{Q})=\max _{w \in \mathbb{R}^{d}}\left[\mathbb{P} \log \frac{1}{1+e^{-w^{T} g(X)}}+\mathbb{Q} \log \frac{1}{1+e^{w^{T} g(X)}}\right]+\log 4 .
$$

## Proposition.

$$
\mathrm{JS}_{g}(\mathbb{P}, \mathbb{Q})=0 \Longleftrightarrow \mathbb{P} g(X)=\mathbb{Q} g(X)
$$

## JS-GAN

$$
\widehat{\theta}=\underset{\eta \in \mathbb{R}^{p}}{\operatorname{argmin}} \max _{T \in \mathcal{T}}\left[\frac{1}{n} \sum_{i=1}^{n} \log T\left(X_{i}\right)+E_{\eta} \log (1-T(X))\right]+\log 4
$$

Theorem [GLYZ18]. For a neural network class $\mathcal{T}$ with at least one hidden layer and appropriate regularization, we have

$$
\|\widehat{\theta}-\theta\|^{2} \lesssim\left\{\begin{array}{l}
\frac{p}{n}+\epsilon^{2} \quad(\text { indicator/sigmoid/ramp }) \\
\frac{p \log p}{n}+\epsilon^{2} \quad(\text { ReLUs+sigmoid features })
\end{array}\right.
$$

with high probability uniformly over $\theta \in \mathbb{R}^{p}, Q$.

## JS-GAN: Adaptation to Unknown Covariance

unknown covariance?

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N(\theta, \Sigma)+\epsilon Q
$$

## JS-GAN: Adaptation to Unknown Covariance

## unknown

 covariance?$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N(\theta, \Sigma)+\epsilon Q
$$

$(\widehat{\theta}, \widehat{\Sigma})=\underset{\eta, \Gamma}{\operatorname{argmin}} \underset{T \in \mathcal{T}}{\max }\left[\frac{1}{n} \sum_{i=1}^{n} \log T\left(X_{i}\right)+\mathbb{E}_{X \sim N(\eta, \Gamma)} \log (1-T(X))\right]$

## JS-GAN: Adaptation to Unknown Covariance

## unknown covariance?

$$
X_{1}, \ldots, X_{n} \sim(1-\epsilon) N(\theta, \Sigma)+\epsilon Q
$$

$(\widehat{\theta}, \widehat{\Sigma})=\underset{\eta, \Gamma}{\operatorname{argmin}} \max _{T \in \mathcal{T}}\left[\frac{1}{n} \sum_{i=1}^{n} \log T\left(X_{i}\right)+\mathbb{E}_{X \sim N(\eta, \Gamma)} \log (1-T(X))\right]$
no need to change the discriminator class

## Generalization

## Strong Contamination model:

$X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} P$ for some $P$ satisfying $\operatorname{TV}(P, E(\theta, \Sigma, H)) \leq \epsilon$
$(\widehat{\theta}, \widehat{\Sigma}, \widehat{H})=\underset{\eta \in \mathbb{R}^{p}, \Gamma \in \mathcal{E}_{p}(M), H \in \mathcal{H}\left(M^{\prime}\right)}{\operatorname{argmin}} \max _{T \in \mathcal{T}}\left[\frac{1}{n} \sum_{i=1}^{n} S\left(T\left(X_{i}\right), 1\right)+\mathbb{E}_{X \sim E(\eta, \Gamma, G)} S(T(X), 0)\right]$

A scoring rule $S$ is regular if both $S(\cdot, 0)$ and $S(\cdot, 1)$ are real-valued, except possibly that $S(0,1)=-\infty$ or $S(1,0)=-\infty$. The celebrated Savage representation [50] asserts that a regular scoring rule $S$ is proper if and only if there is a convex function $G(\cdot)$, such that

$$
\left\{\begin{array}{l}
S(t, 1)=G(t)+(1-t) G^{\prime}(t),  \tag{10}\\
S(t, 0)=G(t)-t G^{\prime}(t)
\end{array}\right.
$$

Here, $G^{\prime}(t)$ is a subgradient of $G$ at the point $t$. Moreover, the statement also holds for strictly proper scoring rules when convex is replaced by strictly convex.

## Consistency

Theorem [GYZ19]. For a neural network class $\mathcal{T}$ with at least one hidden layer and appropriate regularization, we have

$$
\begin{aligned}
\|\widehat{\theta}-\theta\|^{2} & \leq C\left(\frac{p}{n} \vee \epsilon^{2}\right), \\
\|\widehat{\Sigma}-\Sigma\|_{\mathrm{op}}^{2} & \leq C\left(\frac{p}{n} \vee \epsilon^{2}\right),
\end{aligned}
$$

## Example 1: Log Score and JS-GAN

1. Log Score. The log score is perhaps the most commonly used rule because of its various intriguing properties [31]. The scoring rule with $S(t, 1)=\log t$ and $S(t, 0)=\log (1-$ $t)$ is regular and strictly proper. Its Savage representation is given by the convex function $G(t)=t \log t+(1-t) \log (1-t)$, which is interpreted as the negative Shannon entropy of Bernoulli $(t)$. The corresponding divergence function $D_{\mathcal{T}}(P, Q)$, according to Proposition 3.1, is a variational lower bound of the Jensen-Shannon divergence

$$
\mathrm{JS}(P, Q)=\frac{1}{2} \int \log \left(\frac{d P}{d P+d Q}\right) d P+\frac{1}{2} \int \log \left(\frac{d Q}{d P+d Q}\right) d Q+\log 2
$$

Its sample version (13) is the original GAN proposed by [25] that is widely used in learning distributions of images.

## Example 2: Zero-One Score and TV-GAN

2. Zero-One Score. The zero-one score $S(t, 1)=2 \mathbb{I}\{t \geq 1 / 2\}$ and $S(t, 0)=2 \mathbb{I}\{t<1 / 2\}$ is also known as the misclassification loss. This is a regular proper scoring rule but not strictly proper. The induced divergence function $D_{\mathcal{T}}(P, Q)$ is a variational lower bound of the total variation distance

$$
\operatorname{TV}(P, Q)=P\left(\frac{d P}{d Q} \geq 1\right)-Q\left(\frac{d P}{d Q} \geq 1\right)=\frac{1}{2} \int|d P-d Q|
$$

The sample version (13) is recognized as the TV-GAN that is extensively studied by [21] in the context of robust estimation.

## Example 3: Quadratic Score and LS-GAN

3. Quadratic Score. Also known as the Brier score [6], the definition is given by $S(t, 1)=$ $-(1-t)^{2}$ and $S(t, 0)=-t^{2}$. The corresponding convex function in the Savage representation is given by $G(t)=-t(1-t)$. By Proposition 2.1, the divergence function (3) induced by this regular strictly proper scoring rule is a variational lower bound of the following divergence function,

$$
\Delta(P, Q)=\frac{1}{8} \int \frac{(d P-d Q)^{2}}{d P+d Q}
$$

known as the triangular discrimination. The sample version (5) belongs to the family of least-squares GANs proposed by [39].

## Example 4: Boosting Score

4. Boosting Score. The boosting score was introduced by [7] with $S(t, 1)=-\left(\frac{1-t}{t}\right)^{1 / 2}$ and $S(t, 0)=-\left(\frac{t}{1-t}\right)^{1 / 2}$ and has an connection to the AdaBoost algorithm. The corresponding convex function in the Savage representation is given by $G(t)=-2 \sqrt{t(1-t)}$. The induced divergence function $D_{\mathcal{T}}(P, Q)$ is thus a variational lower bound of the squared Hellinger distance

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{d P}-\sqrt{d Q})^{2}
$$

## Example 5: Beta Score and new GANs

5. Beta Score. A general Beta family of proper scoring rules was introduced by [7] with $S(t, 1)=-\int_{t}^{1} c^{\alpha-1}(1-c)^{\beta} d c$ and $S(t, 0)=-\int_{0}^{t} c^{\alpha}(1-c)^{\beta-1} d c$ for any $\alpha, \beta>-1$. The $\log$ score, the quadratic score and the boosting score are special cases of the Beta score with $\alpha=\beta=0, \alpha=\beta=1, \alpha=\beta=-1 / 2$. The zero-one score is a limiting case of the Beta score by letting $\alpha=\beta \rightarrow \infty$. Moreover, it also leads to asymmetric scoring rules with $\alpha \neq \beta$.

## Robust Learning of Gaussian Distributions

| $Q$ | $n$ | $p$ | $\epsilon$ | TV-GAN | JS-GAN | Dimension Halving | Iterative Filtering |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N\left(0.5 * 1_{p}, I_{p}\right)$ | 50,000 | 100 | .2 | $\mathbf{0 . 0 9 5 3 ( 0 . 0 0 6 4 )}$ | $0.1144(0.0154)$ | $0.3247(0.0058)$ | $0.1472(0.0071)$ |
| $N\left(0.5 * 1_{p}, I_{p}\right)$ | 5,000 | 100 | .2 | $\mathbf{0 . 1 9 4 1 ( 0 . 0 1 7 3 )}$ | $0.2182(0.0527)$ | $0.3568(0.0197)$ | $0.2285(0.0103)$ |
| $N\left(0.5 * 1_{p}, I_{p}\right)$ | 50,000 | 200 | .2 | $\mathbf{0 . 1 1 0 8 ( 0 . 0 0 9 3 )}$ | $0.1573(0.0815)$ | $0.3251(0.0078)$ | $0.1525(0.0045)$ |
| $N\left(0.5 * 1_{p}, I_{p}\right)$ | 50,000 | 100 | .05 | $0.0913(0.0527)$ | $0.1390(0.0050)$ | $0.0814(0.0056)$ | $\mathbf{0 . 0 5 3 0} \mathbf{( 0 . 0 0 5 2 )}$ |
| $N\left(5 * 1_{p}, I_{p}\right)$ | 50,000 | 100 | .2 | $2.7721(0.1285)$ | $\mathbf{0 . 0 5 3 4} \mathbf{( 0 . 0 0 4 1 )}$ | $0.3229(0.0087)$ | $0.1471(0.0059)$ |
| $N\left(0.5 * 1_{p}, \Sigma\right)$ | 50,000 | 100 | .2 | $0.1189(0.0195)$ | $\mathbf{0 . 1 1 4 8} \mathbf{( 0 . 0 2 3 4 )}$ | $0.3241(0.0088)$ | $0.1426(0.0113)$ |
| Cauchy $\left(0.5 * 1_{p}\right)$ | 50,000 | 100 | .2 | $0.0738(0.0053)$ | $\mathbf{0 . 0 5 2 5} \mathbf{( 0 . 0 0 2 9 )}$ | $0.1045(0.0071)$ | $0.0633(0.0042)$ |

Table: Comparison of various robust mean estimation methods. The smallest error of each case is highlighted in bold.

- Dimension Halving: [Lai et al.'16] https://github.com/kal2000/AgnosticMeanAndCovarianceCode.
- Iterative Filtering: [Diakonikolas et al.'17] https://github.com/hoonose/robust-filter.


## Robust Learning of Cauchy Distributions

Table 4: Comparison of various methods of robust location estimation under Cauchy distributions. Samples are drawn from $(1-\epsilon)$ Cauchy $\left(0_{p}, I_{p}\right)+\epsilon Q$ with $\epsilon=0.2, p=50$ and various choices of $Q$. Sample size: 50,000. Discriminator net structure: 50-50-25-1. Generator $g_{\omega}(\xi)$ structure: 48-48-32-24-12-1 with absolute value activation function in the output layer.

| Contamination $Q$ | JS-GAN $\left(G_{1}\right)$ | JS-GAN $\left(G_{2}\right)$ | Dimension Halving | Iterative Filtering |
| :---: | :---: | :---: | :---: | :---: |
| Cauchy $\left(1.5 * 1_{p}, I_{p}\right)$ | $\mathbf{0 . 0 6 6 4}(\mathbf{0 . 0 0 6 5})$ | $0.0743(0.0103)$ | $0.3529(0.0543)$ | $0.1244(0.0114)$ |
| Cauchy $\left(5.0 * 1_{p}, I_{p}\right)$ | $\mathbf{0 . 0 4 8 0 ( 0 . 0 0 5 8 )}$ | $0.0540(0.0064)$ | $0.4855(0.0616)$ | $0.1687(0.0310)$ |
| Cauchy $\left(1.5 * 1_{p}, 5 * I_{p}\right)$ | $0.0754(0.0135)$ | $\mathbf{0 . 0 7 4 2}(\mathbf{( 0 . 0 1 1 1 )}$ | $0.3726(0.0530)$ | $0.1220(0.0112)$ |
| Normal $\left(1.5 * 1_{p}, 5 * I_{p}\right)$ | $\mathbf{0 . 0 7 0 2}(\mathbf{0 . 0 0 6 4})$ | $0.0713(0.0088)$ | $0.3915(0.0232)$ | $0.1048(0.0288))$ |

- Dimension Halving: [Lai et al.'16] https://github.com/kal2000/AgnosticMeanAndCovarianceCode.
- Iterative Filtering: [Diakonikolas et al.'17] https://github.com/hoonose/robust-filter.


## Discriminator identifies

## outliers




$$
\begin{gathered}
(1-\epsilon) N\left(0_{p}, I_{p}\right)+\epsilon Q \\
N\left(5 * 1_{p}, I_{p}\right)
\end{gathered}
$$

- Discriminator helps identify outliers or contaminated samples
- Generator fits uncontaminated portion of true samples

Application: Price of 50 stocks from 2007/01 to 2018/12 Corps are selected by ranking in market capitalization



Log-return. y[i] = log(price_\{i+1\}/price_\{i\})

## Fit data by Elliptica-GAN.

Apply SVD on scatter.
Dimension reduction on $\mathbf{R}^{\wedge} 2$. outlier x and o are selected from Discriminator value distribution.


Discriminator value distribution from (Elliptical) Generator and real samples. Outliers are chosen from samples larger/ lower than a chosen percentile of Generator distribution


## Loading of PCA.

First two direction are dominated by few corps $->$ not robust


## Loading of Elliptical Scatter: Comparing with PCA, it's more robust in the sense that it does not totally dominate by Financial company (JPM, GS)



## Reference

- Gao, Liu, Yao, Zhu, Robust Estimation and Generative Adversarial Networks, ICLR 2019, https://arxiv.org/abs/1810.02030
- Gao, Yao, Zhu, Generative Adversarial Networks for Robust Scatter Estimation: A Proper Scoring Rule Perspective, https://arxiv.org/abs/1903.01944


## Thank You





