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Non-Euclidean Datae

Graphs/
Networks

Functional networks 3D shapes

@ Also chemistry, physics, social science, communication networks, etc.




Graphs and Manitolds

Manifolds




Social Networks as Graphs and
Features on Edges and Vertices




Graphs and Manifolds may vary

3D shapes
(different manifolds)

Molecule graph




Challenges

= What geometric structure in images, speech, video, text, is
exploited by CNNs<

= How to leverage such structure on non-Euclidean domains<¢




Convolutional Networks on Euclidean
Domain (e.g. LeNet for Images)

@ An architecture for high-dimensional learning :

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
6@28x28
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@ Curse of dimensionality :
dim(image) = 1024 x 1024 = 10°
For N=10 samples/dim = 10%090.00 points

@ ConvNets are powerful to solve high-dimensional learning
problems.
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“I think you should be more explicit here in step two.”




ConvNets on Euclidean Domains

® Main assumption :

® Data (image, video, sound) is compositional, it is formed of patterns that are:
@ Local
® Stationary

® Multi-scale (hierarchical)

@ ConvNets leverage the compositionality structure :

@ They extract compositional features and feed them to classifier,
recommender, etc (end-to-end).
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Key Property: Locality

® Locality :

@ Property inspired by the human visual cortex system.

@ Local receptive fields (Hubel, Wiesel 1962) :

Bresson

@ Activate in the presence of local features. Slectrical signal
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Key Property: Stationarity (Invariance)

@ Stationarity <& Translation invariance

® Global invariance

@ Local stationarity < Similar patches are shared
across the data domain

@ Local invariance, essential for intra-class
variations




Key Property: Multiscale Representation

® Multi-scale :

@ Simple structures combine to compose slightly more abstract structures, and so on,
in a hierarchical way.

@ Inspired by brain visual primary cortex (V1 and V2 neurons).

Features learned by ConvNet become increasingly more complex at deeper layers
(Zeiler, Fergus 2013)




How to avoid the curse of dimensionalitye

® Locality :

@ Compact support kernels = O(1) parameters
per filter.

@ Stationarity :

@ Convolutional operators = O(nlogn) in
general (FFT) and O(n) for compact kernels.
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® Multi-scale : :

@ Downsampling + pooling = O(n)

- W] | =
QW | = N[N

NI N O | =
Al O| | >
w
£ -




Implementation: Compositional Maps

fi = [-th image feature (R,G,B channels), dim(f;) =n x 1
gl(k) = [-th feature map, dim(gl(k)) = nl(k) x 1
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Compositional features consist of multiple convolutional 4+ pooling layers.

dk—1 dk—2
Convolutional layer gl(k) =¢ (Z Wl(kl:,) * & (Z Wl(ﬁ,_l) *ﬁ(- : -fl/> >>

=1 =1
Activation, e.g. ¢(x) = max{x,0} rectified linear unit (ReLU)

Pooling gl(k)(:v) = ||gl(k_1)(:v’) ' e N(@)|l, p=1,2, or



Summary of ConvNerts

C1: foad C3: f. maps 16@10x10

. feature maps S4: f. maps 16@5x5

INPUT 6@28x28 ps 16@
S2: f. maps

32x32
6@14x14

| Full connection ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Filters localized in space (locality)
Convolutional filters (stationarity)

Multiple layers (multi-scale)
O(1) parameters per filter (independent of input image size n)

© 6 6 6 6

O(n) complexity per layer (filtering done in the spatial domain)




Generalization 1o ConvNets on Graphse

@ How to extend ConvNets to graph-structured data?

@ Assumption :
@ Non-Euclidean data is locally stationary and manifest hierarchical structures.

@ How to define compositionality on graphs? (convolution and pooling on graphs)

@ How to make them fast? (linear complexity)




Next:

» Prof. Xavier Bresson, NTU
» |[PAM talk on Convolutional Neural Networks on Graphs
» Nhitps://www.youtube.com/watch2ev=v3|ZRkvIOIM

» Prof. Zhizhen ZHAO, UIUC

» Seminar: Multi-Scale and Multi-Representation Learning on Graphs and Manifolds




Thank you!




