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Image Classification

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Example Dataset: CIFAR10

18

 Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes
50,000 training images
10,000 testing images

Example Dataset: Fashion MNIST
28x28 grayscale images
60,000 training and 10,000 test examples
10 classes

Jason WU, Peng XU, and Nayeon LEE



The Challenge of Human-Instructing-
Computers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

This image by Nikita is 
licensed under CC-BY 2.0

The Problem: Semantic Gap

7

What the computer sees

An image is just a big grid of 
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)



Complex Invariance
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Challenges: Deformation

10

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0

This image by Tom Thai is 
licensed under CC-BY 2.0 

This image by sare bear is 
licensed under CC-BY 2.0

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0
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Challenges: Viewpoint variation
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All pixels change when 
the camera moves!

This image by Nikita is 
licensed under CC-BY 2.0

Euclidean transform

Large scale deformation



Complex Invariance
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Challenges: Illumination
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This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain
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This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain
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Challenges: Occlusion
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This image is CC0 1.0 public domain This image by jonsson is licensed 
under CC-BY 2.0This image is CC0 1.0 public domain
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Challenges: Intraclass variation

13

This image is CC0 1.0 public domain



Data Driven Learning of the invariants:
linear discriminant/classification
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Recall from last time: Linear Classifier

7

f(x,W) = Wx + b



(Empirical) Loss or Risk Function
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

A loss function tells how 
good our current classifier is

Given a dataset of examples

Where       is image and 
                  is (integer) label

Loss over the dataset is a 
sum of loss over examples:



Hing Loss
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

“Hinge loss”
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Loss over full dataset is average:

Losses: 12.92.9 0 L = (2.9 + 0 + 12.9)/3 
   = 5.27
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Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:



Cross Entropy (Negative Log-likelihood)
Loss
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities

normalize
0.13
0.87
0.00

probabilities

L_i = -log(0.13)
      = 0.89



Loss + Regularization
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Data loss: Model predictions 
should match training data

Regularization: Model 
should be “simple”, so it 
works on test data

Occam’s Razor: 
“Among competing hypotheses, 
the simplest is the best”
William of Ockham, 1285 - 1347



Regularizations

´ Explicit regularization
´ L2-regularization

´ L1-regularization (Lasso)

´ Elastic-net (L1+L2)

´ Max-norm regularization

´ Implicit regularization
´ Dropout

´ Batch-normalization

´ Earlystopping
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 2017

Regularization

34

= regularization strength
(hyperparameter)

In common use: 
L2 regularization
L1 regularization
Elastic net (L1 + L2)
Max norm regularization (might see later)
Dropout (will see later)
Fancier: Batch normalization, stochastic depth



Hyperparameter (Regularization) Tuning
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Recall from last time: data-driven approach, kNN

6

1-NN classifier 5-NN classifier

train test

train testvalidation

Data rich:

Data poverty: cross-validation

5.2. Cross validation

K-fold cross validation
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Figure: 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE
estimates.

Chapter 5 February 27, 2018 27 / 53
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Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

How do we find the best W?

In regression, square loss is often used instead.



Optimization Methods to find minima
of the Loss Landscape?
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Walking man image is CC0 1.0 public domain



Gradient Descent Method
Introduction

Introduction

Gradient descent is a way to minimize an objective function J(✓)
✓ 2 Rd : model parameters
⌘: learning rate
r✓J(✓): gradient of the objective function with regard to the
parameters

Updates parameters in opposite direction of gradient.
Update equation: ✓ = ✓ � ⌘ ·r✓J(✓)

Figure: Optimization with gradient descent

Sebastian Ruder Optimization for Deep Learning 24.11.17 3 / 49



Gradient Descent Variants

´ Batch Gradient Descent

´ Stochastic Gradient Descent

´ Mini-batch Gradient Descent

´ Difference: how much data we use in computing the gradients



Batch Gradient Descent

´ Computes gradient with the entire dataset

´ Update rule: 

Gradient descent variants Batch gradient descent

Batch gradient descent

Computes gradient with the entire dataset.

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓)

for i in range(nb_epochs ):

params_grad = evaluate_gradient(

loss_function , data , params)

params = params - learning_rate * params_grad

Listing 1: Code for batch gradient descent update

Sebastian Ruder Optimization for Deep Learning 24.11.17 5 / 49
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´ Pros:
´ Guaranteed to converge to global minimum for convex objective function and 

to a stationary/critical point for non-convex ones. 

´ Exponentially fast (linear) convergence rates in strongly convex landscape

´ Sublinear convergence rates in convex landscape

´ Cons:
´ Slow in big data.

´ Intractable for big datasets that do not fit in memory. 

´ No online learning. 



Stochastic Gradient Descent

´ Computes update for each example (x(i), y(i)), usually uniformly sampled 
from the training dataset

´ Update equation: 

´ The expectation of stochastic gradient is the batch gradient

Gradient descent variants Stochastic gradient descent

Stochastic gradient descent

Computes update for each example x (i)y (i).

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓; x (i); y (i))

for i in range(nb_epochs ):

np.random.shuffle(data)

for example in data:

params_grad = evaluate_gradient(

loss_function , example , params)

params = params - learning_rate * params_grad

Listing 2: Code for stochastic gradient descent update

Sebastian Ruder Optimization for Deep Learning 24.11.17 7 / 49

Gradient descent variants Stochastic gradient descent

Stochastic gradient descent

Computes update for each example x (i)y (i).

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓; x (i); y (i))
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´ Pros:
´ Guaranteed to converge to global minimum for convex losses and to a local 

optima for non-convex ones, may escape saddle points polynomially fast 

´ O(1/k) convergence rates in convex losses, possibly dimension-free

´ Much faster than batch in big data

´ Online learning algorithms

´ Cons:
´ High variance in gradients and outcomes

Gradient descent variants Stochastic gradient descent

Pros
Much faster than batch gradient descent.
Allows online learning.

Cons
High variance updates.

Figure: SGD fluctuation (Source: Wikipedia)

Sebastian Ruder Optimization for Deep Learning 24.11.17 8 / 49



Batch GD vs. Stochastic GD

´ SGD shows same convergence behaviour as batch gradient descent if 
learning rate is slowly decreased (annealed) over time. 

Gradient descent variants Stochastic gradient descent

Batch gradient descent vs. SGD fluctuation

Figure: Batch gradient descent vs. SGD fluctuation (Source: wikidocs.net)

SGD shows same convergence behaviour as batch gradient descent if
learning rate is slowly decreased (annealed) over time.

Sebastian Ruder Optimization for Deep Learning 24.11.17 9 / 49



Mini-batch Gradient Descent

´ Performs update for every mini-batch of random n examples. 

´ Update equation: 

´ The expectation of gradient is the same as the batch gradient

Gradient descent variants Mini-batch gradient descent

Mini-batch gradient descent

Performs update for every mini-batch of n examples.

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓; x (i :i+n); y (i :i+n))

for i in range(nb_epochs ):

np.random.shuffle(data)

for batch in get_batches(data , batch_size =50):

params_grad = evaluate_gradient(

loss_function , batch , params)

params = params - learning_rate * params_grad

Listing 3: Code for mini-batch gradient descent update

Sebastian Ruder Optimization for Deep Learning 24.11.17 10 / 49
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´ Pros
´ Reduces variance of updates.

´ Can exploit matrix multiplication primitives. 

´ Cons
´ Mini-batch size is a hyperparameter. Common sizes are 50-256. 

´ Typically the algorithm of choice.

´ Usually referred to as SGD in deep learning even when mini-batches are 
used. 



Gradient descent variants Mini-batch gradient descent

Method Accuracy
Update
Speed

Memory
Usage

Online
Learning

Batch
gradient descent

Good Slow High No

Stochastic
gradient descent

Good (with
annealing)

High Low Yes

Mini-batch
gradient descent

Good Medium Medium Yes

Table: Comparison of trade-o↵s of gradient descent variants

Sebastian Ruder Optimization for Deep Learning 24.11.17 12 / 49



Challenges

´ Choosing a learning rate.

´ Defining an annealing (learning rate decay) schedule. 

´ Escaping saddles and suboptimal minima. 



Variants of Gradient Descent Algorithms

´ Momentum 

´ Nesterov accelerated gradient 

´ Adagrad

´ Adadelta

´ RMSprop

´ Adam 

´ Adam extensions 



Momentum by Polyak 1964, heavy ball

We will be considering unconstrained minimization problems,

min
x∈Rn

f(x), (1.1)

where f is a smooth convex function. Perhaps the simplest first-order method for solving this
problem is gradient descent. Taking a fixed step size s, gradient descent is implemented as the
recursive rule

xk+1 = xk − s∇f(xk),

given an initial point x0.
As has been known at least since the advent of conjugate gradient algorithms, improvements

to gradient descent can be obtained within a first-order framework by using the history of past
gradients. Modern research on such extended first-order methods arguably dates to Polyak [Pol64,
Pol87], whose heavy-ball method incorporates a momentum term into the gradient step. This
approach allows past gradients to influence the current step, while avoiding the complexities of
conjugate gradients and permitting a stronger theoretical analysis. Explicitly, starting from an
initial point x0, x1 ∈ Rn, the heavy-ball method updates the iterates according to

xk+1 = xk + α (xk − xk−1)− s∇f(xk), (1.2)

where α > 0 is the momentum coefficient. While the heavy-ball method provably attains a faster
rate of local convergence than gradient descent near a minimum of f , it does not come with global

guarantees. Indeed, [LRP16] demonstrate that even for strongly convex functions the method can
fail to converge for some choices of the step size.1

The next major development in first-order methodology was due to Nesterov, who discovered
a class of accelerated gradient methods that have a faster global convergence rate than gradient
descent [Nes83, Nes13]. For a µ-strongly convex objective f with L-Lipschitz gradients, Nesterov’s
accelerated gradient method (NAG-SC) involves the following pair of update equations:

yk+1 = xk − s∇f(xk)

xk+1 = yk+1 +
1−√

µs

1 +
√
µs

(yk+1 − yk) ,
(1.3)

given an initial point x0 = y0 ∈ Rn. Equivalently, NAG-SC can be written in a single-variable form
that is similar to the heavy-ball method:

xk+1 = xk +
1−√

µs

1 +
√
µs

(xk − xk−1)− s∇f(xk)−
1−√

µs

1 +
√
µs

· s (∇f(xk)−∇f(xk−1)) , (1.4)

starting from x0 and x1 = x0 − 2s∇f(x0)
1+

√
µs . Like the heavy-ball method, NAG-SC blends gradient

and momentum contributions into its update direction, but defines a specific momentum coefficient
1−√

µs
1+

√
µs . Nesterov also developed the estimate sequence technique to prove that NAG-SC achieves an

accelerated linear convergence rate:

f(xk)− f(x⋆) ≤ O
(

(1−√
sµ)k

)

,

1[Pol64] considers s = 4/(
√
L +

√
µ)2 and α = (1 − √

µs)2. This momentum coefficient is basically the same as

the choice α =
1−√

µs

1+
√

µs
(adopted starting from Section 1.1) if s is small.

2



Momentum in Deep Learning
Gradient descent optimization algorithms Momentum

Momentum

SGD has trouble navigating ravines.
Momentum [Qian, 1999] helps SGD accelerate.
Adds a fraction � of the update vector of the past step vt�1 to
current update vector vt . Momentum term � is usually set to 0.9.

vt = �vt�1 + ⌘r✓J(✓)

✓ = ✓ � vt
(1)

(a) SGD without momentum (b) SGD with momentum

Figure: Source: Genevieve B. Orr

Sebastian Ruder Optimization for Deep Learning 24.11.17 15 / 49



Gradient descent optimization algorithms Momentum

Reduces updates for dimensions whose gradients change
directions.

Increases updates for dimensions whose gradients point in the
same directions.

Figure: Optimization with momentum (Source: distill.pub)

Sebastian Ruder Optimization for Deep Learning 24.11.17 16 / 49



Nesterov Accelerated GradientGradient descent optimization algorithms Nesterov accelerated gradient

Nesterov accelerated gradient

Momentum blindly accelerates down slopes: First computes
gradient, then makes a big jump.
Nesterov accelerated gradient (NAG) [Nesterov, 1983] first makes a
big jump in the direction of the previous accumulated gradient
✓ � �vt�1. Then measures where it ends up and makes a correction,
resulting in the complete update vector.

vt = � vt�1 + ⌘r✓J(✓ � �vt�1)

✓ = ✓ � vt
(2)

Figure: Nesterov update (Source: G. Hinton’s lecture 6c)

Sebastian Ruder Optimization for Deep Learning 24.11.17 17 / 49



Nesterov ODE: convex 

´ f is convex and has L-Lipschitz gradient, Nesterov Acceleration (NAG-C):

´ [Weijie Su, Stephen Boyd, Emmanuel Candes’2016] Nesterov ODE: 

if the step size satisfies 0 < s ≤ 1/L. Moreover, for a (weakly) convex objective f with L-Lipschitz
gradients, Nesterov defined a related accelerated gradient method (NAG-C), that takes the following
form:

yk+1 = xk − s∇f(xk)

xk+1 = yk+1 +
k

k + 3
(yk+1 − yk),

(1.5)

with x0 = y0 ∈ Rn. The choice of momentum coefficient k
k+3 , which tends to one, is fundamental to

the estimate-sequence-based argument used by Nesterov to establish the following inverse quadratic
convergence rate:

f(xk)− f(x⋆) ≤ O

(
1

sk2

)

, (1.6)

for any step size s ≤ 1/L. Under an oracle model of optimization complexity, the convergence rates
achieved by NAG-SC and NAG-C are optimal for smooth strongly convex functions and smooth
convex functions, respectively [NY83].

1.1 Gradient Correction: Small but Essential

Throughout the present paper, we let α =
1−√

µs
1+

√
µs and x1 = x0 − 2s∇f(x0)

1+
√
µs to define a specific

implementation of the heavy-ball method in (1.2). This choice of the momentum coefficient and the
second initial point renders the heavy-ball method and NAG-SC identical except for the last (small)
term in (1.4). Despite their close resemblance, however, the two methods are in fact fundamentally
different, with contrasting convergence results (see, for example, [Bub15]). Notably, the former
algorithm in general only achieves local acceleration, while the latter achieves acceleration method
for all initial values of the iterate [LRP16]. As a numerical illustration, Figure 1 presents the
trajectories that arise from the two methods when minimizing an ill-conditioned convex quadratic
function. We see that the heavy-ball method exhibits pronounced oscillations throughout the
iterations, whereas NAG-SC is monotone in the function value once the iteration counter exceeds
50.

This striking difference between the two methods can only be attributed to the last term in
(1.4):

1−√
µs

1 +
√
µs

· s (∇f(xk)−∇f(xk−1)) , (1.7)

which we refer to henceforth as the gradient correction2. This term corrects the update direction
in NAG-SC by contrasting the gradients at consecutive iterates. Although an essential ingredient
in NAG-SC, the effect of the gradient correction is unclear from the vantage point of the estimate-
sequence technique used in Nesterov’s proof. Accordingly, while the estimate-sequence technique
delivers a proof of acceleration for NAG-SC, it does not explain why the absence of the gradient
correction prevents the heavy-ball method from achieving acceleration for strongly convex functions.

A recent line of research has taken a different point of view on the theoretical analysis of
acceleration, formulating the problem in continuous time and obtaining algorithms via discretiza-
tion [SBC14, KBB15, WWJ16]). This can be done by taking continuous-time limits of existing

2The gradient correction for NAG-C is k
k+3 ·s(∇f(xk)−∇f(xk−1)), as seen from the single-variable form of NAG-C:

xk+1 = xk + k
k+3(xk − xk−1)− s∇f(xk)− k

k+3 · s(∇f(xk)−∇f(xk−1)).

3

k
0 50 100 150

f
(x

k
)
−

f
(x

⋆
)

10-4

10-3

10-2

10-1

100

101

Heavy-ball method: s=0.09
NAG-SC:                 s=0.09

Figure 1: A numerical comparison between NAG-SC and heavy-ball method. The objective function (ill-
conditioned µ/L ≪ 1) is f(x1, x2) = 5× 10−3x2

1 + x2
2, with the initial iterate (1, 1).

algorithms to obtain ordinary differential equations (ODEs) that can be analyzed using the rich
toolbox associated with ODEs, including Lyapunov functions3. For instance, [SBC16] shows that

Ẍ(t) +
3

t
Ẋ(t) +∇f(X(t)) = 0, (1.8)

with initial conditions X(0) = x0 and Ẋ(0) = 0, is the exact limit of NAG-C (1.5) by taking the
step size s → 0. Alternatively, the starting point may be a Lagrangian or Hamiltonian frame-
work [WWJ16]. In either case, the continuous-time perspective not only provides analytical power
and intuition, but it also provides design tools for new accelerated algorithms.

Unfortunately, existing continuous-time formulations of acceleration stop short of differentiating
between the heavy-ball method and NAG-SC. In particular, these two methods have the same

limiting ODE (see, for example, [WRJ16]):

Ẍ(t) + 2
√
µẊ(t) +∇f(X(t)) = 0, (1.9)

and, as a consequence, this ODE does not provide any insight into the stronger convergence results
for NAG-SC as compared to the heavy-ball method. As will be shown in Section 2, this is because

the gradient correction
1−√

µs
1+

√
µss (∇f(xk)−∇f(xk−1)) = O(s1.5) is an order-of-magnitude smaller

than the other terms in (1.4) if s = o(1). Consequently, the gradient correction is not reflected in
the low-resolution ODE (1.9) associated with NAG-SC, which is derived by simply taking s → 0 in
both (1.2) and (1.4).

1.2 Overview of Contributions

Just as there is not a singled preferred way to discretize a differential equation, there is not a single
preferred way to take a continuous-time limit of a difference equation. Inspired by dimensional-

3One can think of the Lyapunov function as a generalization of the idea of the energy of a system. Then the
method studies stability by looking at the rate of change of this measure of energy.
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Nesterov ODE: strongly convex

We will be considering unconstrained minimization problems,

min
x∈Rn

f(x), (1.1)

where f is a smooth convex function. Perhaps the simplest first-order method for solving this
problem is gradient descent. Taking a fixed step size s, gradient descent is implemented as the
recursive rule

xk+1 = xk − s∇f(xk),

given an initial point x0.
As has been known at least since the advent of conjugate gradient algorithms, improvements

to gradient descent can be obtained within a first-order framework by using the history of past
gradients. Modern research on such extended first-order methods arguably dates to Polyak [Pol64,
Pol87], whose heavy-ball method incorporates a momentum term into the gradient step. This
approach allows past gradients to influence the current step, while avoiding the complexities of
conjugate gradients and permitting a stronger theoretical analysis. Explicitly, starting from an
initial point x0, x1 ∈ Rn, the heavy-ball method updates the iterates according to

xk+1 = xk + α (xk − xk−1)− s∇f(xk), (1.2)

where α > 0 is the momentum coefficient. While the heavy-ball method provably attains a faster
rate of local convergence than gradient descent near a minimum of f , it does not come with global

guarantees. Indeed, [LRP16] demonstrate that even for strongly convex functions the method can
fail to converge for some choices of the step size.1

The next major development in first-order methodology was due to Nesterov, who discovered
a class of accelerated gradient methods that have a faster global convergence rate than gradient
descent [Nes83, Nes13]. For a µ-strongly convex objective f with L-Lipschitz gradients, Nesterov’s
accelerated gradient method (NAG-SC) involves the following pair of update equations:

yk+1 = xk − s∇f(xk)

xk+1 = yk+1 +
1−√

µs

1 +
√
µs

(yk+1 − yk) ,
(1.3)

given an initial point x0 = y0 ∈ Rn. Equivalently, NAG-SC can be written in a single-variable form
that is similar to the heavy-ball method:

xk+1 = xk +
1−√

µs

1 +
√
µs

(xk − xk−1)− s∇f(xk)−
1−√

µs

1 +
√
µs

· s (∇f(xk)−∇f(xk−1)) , (1.4)

starting from x0 and x1 = x0 − 2s∇f(x0)
1+

√
µs . Like the heavy-ball method, NAG-SC blends gradient

and momentum contributions into its update direction, but defines a specific momentum coefficient
1−√

µs
1+

√
µs . Nesterov also developed the estimate sequence technique to prove that NAG-SC achieves an

accelerated linear convergence rate:

f(xk)− f(x⋆) ≤ O
(

(1−√
sµ)k

)

,

1[Pol64] considers s = 4/(
√
L +

√
µ)2 and α = (1 − √

µs)2. This momentum coefficient is basically the same as

the choice α =
1−√

µs

1+
√

µs
(adopted starting from Section 1.1) if s is small.
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Figure 1: A numerical comparison between NAG-SC and heavy-ball method. The objective function (ill-
conditioned µ/L ≪ 1) is f(x1, x2) = 5× 10−3x2

1 + x2
2, with the initial iterate (1, 1).

algorithms to obtain ordinary differential equations (ODEs) that can be analyzed using the rich
toolbox associated with ODEs, including Lyapunov functions3. For instance, [SBC16] shows that

Ẍ(t) +
3

t
Ẋ(t) +∇f(X(t)) = 0, (1.8)

with initial conditions X(0) = x0 and Ẋ(0) = 0, is the exact limit of NAG-C (1.5) by taking the
step size s → 0. Alternatively, the starting point may be a Lagrangian or Hamiltonian frame-
work [WWJ16]. In either case, the continuous-time perspective not only provides analytical power
and intuition, but it also provides design tools for new accelerated algorithms.

Unfortunately, existing continuous-time formulations of acceleration stop short of differentiating
between the heavy-ball method and NAG-SC. In particular, these two methods have the same

limiting ODE (see, for example, [WRJ16]):

Ẍ(t) + 2
√
µẊ(t) +∇f(X(t)) = 0, (1.9)

and, as a consequence, this ODE does not provide any insight into the stronger convergence results
for NAG-SC as compared to the heavy-ball method. As will be shown in Section 2, this is because

the gradient correction
1−√

µs
1+

√
µss (∇f(xk)−∇f(xk−1)) = O(s1.5) is an order-of-magnitude smaller

than the other terms in (1.4) if s = o(1). Consequently, the gradient correction is not reflected in
the low-resolution ODE (1.9) associated with NAG-SC, which is derived by simply taking s → 0 in
both (1.2) and (1.4).

1.2 Overview of Contributions

Just as there is not a singled preferred way to discretize a differential equation, there is not a single
preferred way to take a continuous-time limit of a difference equation. Inspired by dimensional-

3One can think of the Lyapunov function as a generalization of the idea of the energy of a system. Then the
method studies stability by looking at the rate of change of this measure of energy.
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High Resolution Nesterov ODE

´ [Bin Shi, Simon S. Du, Michael I. Jordan, Weijie J. Su 2018]

analysis strategies widely used in fluid mechanics in which physical phenomena are investigated at
multiple scales via the inclusion of various orders of perturbations [Ped13], we propose to incorporate
O(

√
s) terms into the limiting process for obtaining an ODE, including the (Hessian-driven) gradient

correction
√
s∇2f(X)Ẋ in (1.7). This will yield high-resolution ODEs that differentiate between

the NAG methods and the heavy-ball method.
We list the high-resolution ODEs that we derive in the paper here4:

(a) The high-resolution ODE for the heavy-ball method (1.2):

Ẍ(t) + 2
√
µẊ(t) + (1 +

√
µs)∇f(X(t)) = 0, (1.10)

with X(0) = x0 and Ẋ(0) = −2
√
s∇f(x0)
1+

√
µs .

(b) The high-resolution ODE for NAG-SC (1.3):

Ẍ(t) + 2
√
µẊ(t) +

√
s∇2f(X(t))Ẋ(t) + (1 +

√
µs)∇f(X(t)) = 0, (1.11)

with X(0) = x0 and Ẋ(0) = −2
√
s∇f(x0)
1+

√
µs .

(c) The high-resolution ODE for NAG-C (1.5):

Ẍ(t) +
3

t
Ẋ(t) +

√
s∇2f(X(t))Ẋ(t) +

(

1 +
3
√
s

2t

)

∇f(X(t)) = 0 (1.12)

for t ≥ 3
√
s/2, with X(3

√
s/2) = x0 and Ẋ(3

√
s/2) = −

√
s∇f(x0).

High-resolution ODEs are more accurate continuous-time counterparts for the corresponding
discrete algorithms than low-resolution ODEs, thus allowing for a better characterization of the
accelerated methods. This is illustrated in Figure 2, which presents trajectories and convergence of
the discrete methods, and the low- and high-resolution ODEs. For both NAGs, the high-resolution
ODEs are in much better agreement with the discrete methods than the low-resolution ODEs5.
Moreover, for NAG-SC, its high-resolution ODE captures the non-oscillation pattern while the
low-resolution ODE does not.

The three new ODEs include O(
√
s) terms that are not present in the corresponding low-

resolution ODEs (compare, for example, (1.12) and (1.8)). Note also that if we let s → 0, each high-
resolution ODE reduces to its low-resolution counterpart. Thus, the difference between the heavy-
ball method and NAG-SC is reflected only in their high-resolution ODEs: the gradient correction
(1.7) of NAG-SC is preserved only in its high-resolution ODE in the form

√
s∇2f(X(t))Ẋ(t). This

term, which we refer to as the (Hessian-driven) gradient correction, is connected with the discrete
gradient correction by the approximate identity:

1−√
µs

1 +
√
µs

· s (∇f(xk)−∇f(xk−1)) ≈ s∇2f(xk)(xk − xk−1) ≈ s
3
2∇2f(X(t))Ẋ(t)

4We note that the form of the initial conditions is fixed for each ODE throughout the paper. For example, while x0

is arbitrary, X(0) and Ẋ(0) must always be equal to x0 and −2
√
sf(x0)/(1+

√
µs) respectively in the high-resolution

ODE of the heavy-ball method. This is in accordance with the choice of α =
1−√

µs

1+
√
µs

and x1 = x0 − 2s∇f(x0)
1+

√
µs

.
5Note that for the heavy-ball method, the trajectories of the high-resolution ODE and the low-resolution ODE

are almost identical.
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Adagrad
Gradient descent optimization algorithms Adagrad

Adagrad

Previous methods: Same learning rate ⌘ for all parameters ✓.
Adagrad [Duchi et al., 2011] adapts the learning rate to the
parameters (large updates for infrequent parameters, small updates
for frequent parameters).
SGD update: ✓t+1 = ✓t � ⌘ · gt

gt = r✓tJ(✓t)

Adagrad divides the learning rate by the square root of the sum of
squares of historic gradients.
Adagrad update:

✓t+1 = ✓t �
⌘p

Gt + ✏
� gt (3)

Gt 2 Rd⇥d : diagonal matrix where each diagonal element i , i is the
sum of the squares of the gradients w.r.t. ✓i up to time step t
✏: smoothing term to avoid division by zero
�: element-wise multiplication
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´ Pros
´ Well-suited for dealing with sparse data. 

´ Significantly improves robustness of SGD. 

´ Lesser need to manually tune learning rate. 

´ Cons
´ Accumulates squared gradients in denominator. 

´ Causes the learning rate to shrink and become infinitesimally small. 



Adadelta
Gradient descent optimization algorithms Adadelta

Adadelta

Adadelta [Zeiler, 2012] restricts the window of accumulated past
gradients to a fixed size. SGD update:

�✓t = �⌘ · gt
✓t+1 = ✓t +�✓t

(4)

Defines running average of squared gradients E [g2]t at time t:

E [g2]t = �E [g2]t�1 + (1� �)g2

t (5)

�: fraction similarly to momentum term, around 0.9

Adagrad update:

�✓t = � ⌘p
Gt + ✏

� gt (6)

Preliminary Adadelta update:

�✓t = � ⌘p
E [g2]t + ✏

gt (7)
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Gradient descent optimization algorithms Adadelta

�✓t = � ⌘p
E [g2]t + ✏

gt (8)

Denominator is just root mean squared (RMS) error of gradient:

�✓t = � ⌘

RMS [g ]t
gt (9)

Note: Hypothetical units do not match.
Define running average of squared parameter updates and RMS:

E [�✓2]t = �E [�✓2]t�1 + (1� �)�✓2t

RMS [�✓]t =
q
E [�✓2]t + ✏

(10)

Approximate with RMS [�✓]t�1, replace ⌘ for final Adadelta update:

�✓t = �RMS [�✓]t�1

RMS [g ]t
gt

✓t+1 = ✓t +�✓t

(11)
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RMSprop
Gradient descent optimization algorithms RMSprop

RMSprop

Developed independently from Adadelta around the same time by
Geo↵ Hinton.

Also divides learning rate by a running average of squared
gradients.

RMSprop update:

E [g2]t = �E [g2]t�1 + (1� �)g2

t

✓t+1 = ✓t �
⌘p

E [g2]t + ✏
gt

(12)

�: decay parameter; typically set to 0.9
⌘: learning rate; a good default value is 0.001
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Adam

Gradient descent optimization algorithms Adam

Adam

Adaptive Moment Estimation (Adam) [Kingma and Ba, 2015] also
stores running average of past squared gradients vt like Adadelta
and RMSprop.

Like Momentum, stores running average of past gradients mt .

mt = �1mt�1 + (1� �1)gt

vt = �2vt�1 + (1� �2)g
2

t

(13)

mt : first moment (mean) of gradients
vt : second moment (uncentered variance) of gradients
�1,�2: decay rates
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Gradient descent optimization algorithms Adam

mt and vt are initialized as 0-vectors. For this reason, they are biased
towards 0.

Compute bias-corrected first and second moment estimates:

m̂t =
mt

1� �t
1

v̂t =
vt

1� �t
2

(14)

Adam update rule:

✓t+1 = ✓t �
⌘p

v̂t + ✏
m̂t (15)
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Adam Extensions

Gradient descent optimization algorithms Adam extensions

Adam extensions

1 AdaMax [Kingma and Ba, 2015]
Adam with `1 norm

2 Nadam [Dozat, 2016]
Adam with Nesterov accelerated gradient
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Update Equations
Gradient descent optimization algorithms Update equations

Update equations

Method Update equation

SGD
gt = r✓tJ(✓t)
�✓t = �⌘ · gt
✓t = ✓t +�✓t

Momentum �✓t = �� vt�1 � ⌘gt
NAG �✓t = �� vt�1 � ⌘r✓J(✓ � �vt�1)

Adagrad �✓t = � ⌘p
Gt + ✏

� gt

Adadelta �✓t = �RMS [�✓]t�1

RMS [g ]t
gt

RMSprop �✓t = � ⌘p
E [g2]t + ✏

gt

Adam �✓t = � ⌘p
v̂t + ✏

m̂t

Table: Update equations for the gradient descent optimization algorithms.
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Visualization of algorithms
Gradient descent optimization algorithms Comparison of optimizers

Visualization of algorithms

(a) SGD optimization on loss surface
contours

(b) SGD optimization on saddle point

Figure: Source and full animations: Alec Radford
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Comparisons

´ Adaptive learning rate methods (Adagrad, Adadelta, RMSprop, Adam) are 
particularly useful for sparse features. 

´ Adagrad, Adadelta, RMSprop, and Adam work well in similar 
circumstances. 

´ [Kingma and Ba, 2015] show that bias-correction helps Adam slightly 
outperform RMSprop. 



On Convergence Analysis

´ [Xiangyi Chen, Sijia Liu, Ruoyu Sun, Mingyi Hong 2018] On the Convergence 
of A Class of Adam-type Algorithms for Non-Convex Optimization, arXiv: 
1808.02941: 
´ Under mild conditions, this class of methods, which we refer to as the "Adam-

type", includes the popular algorithms such as the Adam, AMSGrad and 
AdaGrad, can achieve convergence rate of order O(log T/\sqrt{T}) for 
nonconvex stochastic optimization.



Parallel and Distributed SGD

´ Hogwild! [Niu et al., 2011] 
´ Parallel SGD updates on CPU 

´ Shared memory access without parameter lock Only works for sparse input data 

´ Downpour SGD [Dean et al., 2012]
´ Multiple replicas of model on subsets of training data run in parallel 

´ Updates sent to parameter server; 

´ updates fraction of model parameters 

´ Delay-tolerant Algorithms for SGD [Mcmahan and Streeter, 2014] 
´ Methods also adapt to update delays 

´ TensorFlow [Abadi et al., 2015]
´ Computation graph is split into a subgraph for every device 

´ Communication takes place using Send/Receive node pairs 

´ Elastic Averaging SGD [Zhang et al., 2015]
´ Links parameters elastically to a center variable stored by parameter server 



Additional Strategies for SGD

´ Shuffling and Curriculum Learning [Bengio et al., 2009] 
´ Shuffle training data after every epoch to break biases 

´ Order training examples to solve progressively harder problems; infrequently used in 
practice 

´ Batch normalization [Ioffe and Szegedy, 2015]
´ Re-normalizes every mini-batch to zero mean, unit variance 

´ Must-use for computer vision 

´ Early stopping
´ “Early stopping (is) beautiful free lunch” (Geoff Hinton) 

´ Gradient noise [Neelakantan et al., 2015] 
´ Add Gaussian noise to gradient 

´ Makes model more robust to poor initializations 

´ Escape saddles or local optima



Adam vs. Tuned SGD 

´ Many recent papers use SGD with learning rate annealing.

´ SGD with tuned learning rate and momentum is competitive with Adam 
[Zhang et al., 2017b].

´ Adam converges faster, but oscillates and may underperform SGD on 
some tasks, e.g. Machine Translation [Wu et al., 2016]. 

´ Adam with restarts and SGD-style annealing converges faster and 
outperforms SGD [Denkowski and Neubig, 2017]. 

´ Increasing the batch size may have the same effect as decaying the 
learning rate [Smith et al., 2017]. 



Second Order Methods
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!

More critical with SGD+Momentum, 
less common with Adam
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First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation
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Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation



Newton Method
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: What is nice about this update?
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: What is nice about this update?

No hyperparameters!
No learning rate!



But, …
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q2: Why is this bad for deep learning?

Hessian has O(N^2) elements
Inverting takes O(N^3)
N = (Tens or Hundreds of) Millions
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Second-Order Optimization

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate 
inverse Hessian with rank 1 updates over time (O(n^2) 
each).

- L-BFGS (Limited memory BFGS): 
Does not form/store the full inverse Hessian.
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L-BFGS

- Usually works very well in full batch, deterministic mode 
i.e. if you have a single, deterministic f(x) then L-BFGS will 
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives 
bad results. Adapting L-BFGS to large-scale, stochastic 
setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”



In practice

´ Adam is a good default choice in most cases
´ Adam+SGD may achieve fast speed and better accuracy

´ If you can afford to do full batch updates then try out L-BFGS (and don’t 
forget to disable all sources of noise)



Regularizations
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Regularization: Add term to loss

59

In common use: 
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Regularization: Dropout Example forward 
pass with a 
3-layer network 
using dropout
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Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous 
look

cat 
score

X

X

X
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Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of 
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...
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Dropout: Test time

Dropout makes our output random!

Output
(label)

Input
(image)

Random 
mask

Want to “average out” the randomness at test-time

But this integral seems hard … 
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.

At test time we have:
During training we have: 

a

x y

w1 w2

At test time, multiply 
by dropout probability 
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Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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Dropout Summary

drop in forward pass

scale at test time
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More common: “Inverted dropout”

test time is unchanged!



Regularization: Batch normalization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201737

Step 1: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)
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Remember: Consider what happens when the input to a 
neuron is always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions



Data normalization
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Last time: Data Preprocessing
Before normalization: classification loss 
very sensitive to changes in weight matrix; 
hard to optimize

After normalization: less sensitive to small 
changes in weights; easier to optimize
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TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize 
variance, to do PCA or 
whitening



Regularization: Batch Normalization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201754

Batch Normalization
“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer. 
To make each dimension unit gaussian, apply:

this is a vanilla 
differentiable function...
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected or Convolutional layers, 
and before nonlinearity.
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected or Convolutional layers, 
and before nonlinearity.

Problem: do we 
necessarily want a unit 
gaussian input to a 
tanh layer?
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Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash 
the range if it wants to:

Note, the network can learn:

to recover the identity 
mapping.

Normalize:
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Batch Normalization [Ioffe and Szegedy, 2015]

- Improves gradient flow through 
the network

- Allows higher learning rates
- Reduces the strong dependence 

on initialization
- Acts as a form of regularization 

in a funny way, and slightly 
reduces the need for dropout, 
maybe
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Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer 
functions differently:

The mean/std are not computed 
based on the batch. Instead, a single 
fixed empirical mean of activations 
during training is used.

(e.g. can be estimated during training 
with running averages)
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Load image 
and label

“cat”

CNN

Compute
loss

Regularization: Data Augmentation

This image by Nikita is 
licensed under CC-BY 2.0
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Regularization: Data Augmentation

Load image 
and label

“cat”

CNN

Compute
loss

Transform image
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Data Augmentation
Random crops and scales
Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales:  {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B] 
pixels in training set

2. Sample a “color offset” 
along principal component 
directions

3. Add offset to all pixels of a 
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)



Data Augmentation
Get creative for your problem!

´ Random mix/combinations of
´ Translation

´ Rotation

´ Stretching

´ Shearing

´ Lens distortions

´ Style transform

´ Adversarials … (go crazy)



Randomized Algorithms
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Regularization: A common pattern
Training: Add some kind 
of randomness

Testing: Average out randomness 
(sometimes approximate)
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Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013
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Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014
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Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016



Randomization can be more:

´ Regularization, that we have seen

´ Privacy (Differential Privacy): Dwork et al.

´ Robustness: Osher et al., Daniel Hsu et al.



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 20178

Review: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]



Popular Architectures
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

First CNN-based winner
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives: 
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks
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Case Study: VGGNet

35

[Simonyan and Zisserman, 2014]

Details:
- ILSVRC’14 2nd in classification, 1st in 

localization
- Similar training procedure as Krizhevsky 

2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only 

slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other 

tasks

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

AlexNet VGG16 VGG19

conv1-1

conv1-2

conv2-1

conv2-2

conv3-1

conv3-2

conv4-1

conv4-2

conv4-3

conv5-1

conv5-2

conv5-3

fc6

fc7

fc8

conv1

conv2

conv3

conv4

conv5

fc6

fc7



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017

Case Study: VGGNet

26
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FC 4096[Simonyan and Zisserman, 2014]

Small filters, Deeper networks
 
8 layers (AlexNet) 
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13 
(ZFNet)
-> 7.3% top 5 error in ILSVRC’14 AlexNet VGG16 VGG19
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Case Study: VGGNet

30

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 
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AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers 
has same effective receptive field as 
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs. 
72C2 for C channels per layer
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)
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VGG16

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational 
efficiency
 

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!          

12x less than AlexNet
- ILSVRC’14 classification winner 

(6.7% top 5 error)
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

“Inception module”: design a 
good local network topology 
(network within a network) and 
then stack these modules on 
top of each other
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201765

Case Study: ResNet
[He et al., 2015]

Very deep networks using residual 
connections
 

- 152-layer model for ImageNet
- ILSVRC’15 classification winner 

(3.57% top 5 error)
- Swept all classification and 

detection competitions in 
ILSVRC’15 and COCO’15!
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!

Tr
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Iterations

56-layer

20-layer
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Case Study: ResNet
[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to 
optimize

The deeper model should be able to perform at 
least as well as the shallower model.

A solution by construction is copying the learned 
layers from the shallower model and setting 
additional layers to identity mapping.
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relu

72

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 
desired underlying mapping

Residual block

conv

conv

X
identity

F(x) + x

F(x)

relu

conv

conv

relu

“Plain” layers
XX

H(x)

Use layers to 
fit residual 
F(x) = H(x) - x 
instead of 
H(x) directly

H(x) = F(x) + x

72
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[He et al., 2015]
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Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample 
spatially using stride 2 
(/2 in each dimension)

- Additional conv layer at 
the beginning

- No FC layers at the end 
(only FC 1000 to output 
classes)

No FC layers 
besides FC 
1000 to 
output 
classes

Global 
average 
pooling layer 
after last 
conv layer
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[He et al., 2015]

Total depths of 34, 50, 101, or 
152 layers for ImageNet
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Case Study: ResNet
[He et al., 2015]

1x1 conv, 256

3x3 conv, 64

1x1 conv, 64

28x28x256  
input

For deeper networks 
(ResNet-50+), use “bottleneck” 
layer to improve efficiency 
(similar to GoogLeNet)

1x1 conv, 64 filters 
to project to 
28x28x64

3x3 conv operates over 
only 64 feature maps

1x1 conv, 256 filters projects 
back to 256 feature maps 
(28x28x256)

28x28x256  
output
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Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9) 
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

[He et al., 2015]
Case Study: ResNet
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Case Study: ResNet
[He et al., 2015]

Experimental Results
- Able to train very deep 

networks without degrading 
(152 layers on ImageNet, 1202 
on Cifar)

- Deeper networks now achieve 
lowing training error as 
expected

- Swept 1st place in all ILSVRC 
and COCO 2015 competitions 

ILSVRC 2015 classification winner (3.6% 
top 5 error) -- better than “human 
performance”! (Russakovsky 2014)

82
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Improving ResNets...

96

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and 
training time through short networks during 
training

- Randomly drop a subset of layers during each 
training pass

- Bypass with identity function
- Use full deep network at test time

 

Deep Networks with Stochastic Depth
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Improving ResNets...

95

[Xie et al. 2016]

- Also from creators of 
ResNet

- Increases width of 
residual block through 
multiple parallel 
pathways 
(“cardinality”)

- Parallel pathways 
similar in spirit to 
Inception module

 

Aggregated Residual Transformations for Deep 
Neural Networks (ResNeXt)
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ResNet in Noisy Ensembles: 
Feynman-Kac Equations
´ ResNet as a discretization of transport PDE

ResNet

Plain Net: xl+1 = G(xl)
ResNet: xl+1 = xl + F(xl)

Learning F is much easier than learning G.

He et al., CVPR, 2016. 9 / 53

A Heuristic Continuous Viewpoint of ResNets

1. The forward propagation (FP) of ResNet for any data-label pair (x̂ , y)

8
><

>:

x(0) = x̂ ,
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2. Continuous limit
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ŷ = f (x(1)),

characteristic curves of the following transport equation (TE)
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Many related works ...
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where F
.
= 1

�tF , and f (x) = softmax(WFC · x).

2. Continuous limit

8
><

>:

dx(t)
dt = F (x(t),W (t)),

x(0) = x̂ ,

ŷ = f (x(1)),

characteristic curves of the following transport equation (TE)

@u
@t

(x , t) + F (x ,W (t)) ·ru(x , t) = 0, x 2 Rd .

Many related works ...
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[Bao Wang, B. Yuan, Zuoqiang Shi, Stan Osher, arXiv:1811.10745]

´ Feynman-Kac Equation by injective Noise:
Improving Robustness via Diffusion

We use diffusion to smooth the decision function u(x , 0), which resulting in

(
@u
@t + F (x ,W (t)) ·ru + 1

2�
2�u = 0, x 2 Rd , t 2 [0, 1),

u(x , 1) = f (x).

(a) � = 0.01 (b) � = 0.1

Figure: (a) and (b) are solutions of the convection-diffusion equation,
Eq. (1), at t = 0 with different diffusion coefficients �.
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Provable Robustness
[O. Ladyzhenskaja et al. Linear and Quasilinear Equations of Parabolic Type]

Stability Theorem for Convection-Diffusion Equation

Theorem (Stability) Let F (x , t) be Lipschitz in both x and t, and

f (x) is bounded. For the following terminal value problem of

convection-diffusion equation (� 6= 0)

(
@u
@t (x , t) + F (x ,W (t)) ·ru(x , t) + 1

2�
2�u(x , t) = 0, x 2 Rd , t 2 [0, 1),

u(x , 1) = f (x).

we have

|u(x + �, 0)� u(x , 0)|  C

✓
k�k2

�

◆↵

for some constant ↵ > 0 if �  1. C is a constant that depends

on d , kf k1, and kFkL1x,t .

O. Ladyzhenskaja and et al., Linear and Quasilinear Equations of Parabolic Type
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