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Image Classification

Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images
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Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

Example Dataset: Fashion MNIST
28x28 grayscale images

60,000 training and 10,000 test examples

10 classes

0 1 2 3 4 5 6 7 8 9

Type T-shirt/top Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot
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The Challenge of Human-Ins

omputers

The Problem: Semantic Gap

This image by Nikita is
licensed under CC-BY 2.0
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What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)




Complex Invariance

Challenges: Viewpoint variation

Euclidean fransform

All pixels change when
the camera moves!

Challenges: Deformation

Large scale deformation




Complex Invariance

Challenges: lllumination Challenges: Background Clutter

This image by jonsson s licensed

s image is CC0 1.0 public domz his imag; 0 1.0 pi omai
This im: is CCO 1.0 public domain This image is CCO 1.0 public domain under CC-BY 2.0




Data Driven Learning of the invariants:
inear discriminant/classification

Image
| f(x, W) » 10 numbers giving f(X,W) — WX + b

..
class scores

Array of 32x32x3 numbers T _\.
(3072 numbers total) W . 5 B E
o
parameters i
=
L 4

or weights

Stretch pixels into column car classifier

airplane classifier, g

56 3 [

02 | 05| 0.1 | 2.0 1.1 -96.8 | Cat score H
231

1.5 1.3 21 0.0 + 32 | — 437.9 Dog score deer classifier
24

] 0 0.25| 0.2 | -0.3 -1.2 61.95 | Ship score
Input image
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(Empirical) Loss or Risk Function

Suppose: 3 training examples, 3 classes.

A loss function tells how
With some W the scores f(x, W) =Wz are:

good our current classifier is
Given a dataset of examples

{(@i,¥i) ffil

Where I ; is image and

cat Y; is (integer) label
car Loss over the dataset is a

sum of loss over examples:
frog

I — % > Ll (i, W), )




“Hinge loss”

Hing Loss

Sy |
I 1

Sjl

Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:

Given an example (Z;, Y;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

cat the SVM loss has the form:

car 5.1 4.9 2.5 - Z{O if 5y, > 55 +1

1 7 2 O 3 1 ity (%9 7 Sui +1 otherwise
frOg = 1. . “J. - Z max(0,s; — Sy, + 1)

Losses: 2.9 0 12.9 i




Cross Entropy (Negative Log-likelihood)

LOSS

Softmax Classifier (Multinomial Logistic Regression)

cat 3.2
car 5.1
frog -1.7

exp

L; = —log(

24.5
164.0
0.18

unnormalized probabilities

normalize

unnormalized log probabilities

-

z:ef)

0.13 |~ L_i=-log(0.13)
= 0.89

0.87

0.00

probabilities




Loss + Regularization

N

LW) ==Y Li(f(z:;,W),y:) + AR(W)

(=i
N

~

Data loss: Model predictions
should match training data

J \ J
Y

Regularization: Model
should be “simple”, so it
works on test data

Occam’s Razor:

“Among competing hypotheses,
the simplest is the best”

William of Ockham, 1285 - 1347



Regularizations

» Explicit regularization
» | 2-regularization R(W) - Zk Zl Wlil
» | ]-regularization (Lasso) R(W) — Zk: Ez |Wkl|
» Elastic-net (L1+L2) R(W)—3; Zzﬁwf,z + [ Wy

» Max-norm regularization

= |mplicit regularization
®» Dropout
» Batch-normalization

» Earlystopping




Hyperparameter (Regularization) Tuning

Data rich:

train test

train validation test

Data poverty: cross-validation
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Recap How do we find the best W*?

- We have some dataset of (x,y) eq.
- We have a score function: s = f(z; W) =Wz
- We have a loss function:

~ Softmax

Sy
. = — ]_0 € .
Lg g( Zj 833‘ ) SVM regularization loss

5 ns ) i . -
L% — Zj%yz ma}((o, 83 Syz —~_ ].) score function uf(m“Wj data loss #‘E‘

-
L

L==+3" L+ R(W) Fulloss =

In regression, square loss is often used instead.



Optimization Methods to find minimao
of the Loss Landscape®@




Gradient Descent Method

e Gradient descent is a way to minimize an objective function J(0)
o 0 € R model parameters
e 7n: learning rate
o VyJ(0): gradient of the objective function with regard to the
parameters

@ Updates parameters in opposite direction of gradient.
o Update equation: 8 =0 —n - VyJ(0)

A

J(0)

local) minimum

0" 6

Figure: Optimization with gradient descent




Gradient Descent Variants

Batch Gradient Descent
Stochastic Gradient Descent

Mini-batch Gradient Descent

Difference: how much data we use in computing the gradients



Batch Gradient Descent

» Computes gradient with the entire dataset

» Update rule: (9 — 6) —n- VQJ(Q)

for i in range(nb_epochs):

params_grad = evaluate_gradient (
loss_function, data, params)
params = params - learning_rate * params_grad

Listing 1: Code for batch gradient descent update




» Pros:

» Guaranteed to converge to global minimum for convex objective function and
to a stationary/critical point for non-convex ones.

» Exponentially fast (linear) convergence rates in strongly convex landscape

» Sublinear convergence rates in convex landscape

=» Cons:
= Slow in big data.
» |ntractable for big datasets that do not fit in memory.

= No online learning.




Stochastic Gradient Descent

» Computes update for each example (x, y(l), usually uniformly sampled
from the training dataset

» Update equation:

H=60—n- vej(g;x(i);y(i))

®» The expectation of stochastic gradient is the batch gradient

for i in range(nb_epochs):
np.random.shuffle (data)
for example in data:
params_grad = evaluate_gradient(
loss_function, example, params)
params = params - learning_rate * params_grad

Listing 2: Code for stochastic gradient descent update



» Pros:

» Guaranteed to converge to global minimum for convex losses and to a local
optima for non-convex ones, may escape saddle points polynomially fast

» O(1/k) convergence rates in convex losses, possibly dimension-free

= Much faster than batch in big data

® Online learning algorithms

» Cons: .

&
T

®» High variance in gradienfs and outcomes
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Figure: SGD fluctuation (Source: Wikipedia)




Batch GD vs. Stochastic GD

» SGD shows same convergence behaviour as batch gradient descent if
learning rate is slowly decreased (annealed) over time.

Figure: Batch gradient descent vs. SGD fluctuation (Source: wikidocs.net)




Mini-batch Gradient Descent

» Performs update for every mini-batch of random n examples.

» Update equation:
f=0—n- VQJ(H, X(i:i—|—n); y(i:i—|—n))

» The expectation of gradient is the same as the batch gradient

for i in range(nb_epochs):
np.random.shuffle (data)
for batch in get_batches(data, batch_size=50):

params_grad = evaluate_gradient (
loss_function, batch, params)
params = params - learning_rate * params_grad

Listing 3: Code for mini-batch gradient descent update




Pros

» Reduces variance of updates.

» Can exploit matrix multiplication primitives.
Cons

» Mini-batch size is a hyperparameter. Common sizes are 50-256.
Typically the algorithm of choice.

Usually referred to as SGD in deep learning even when mini-batches are
used.



Update Memory Online
Method Accuracy Speed Usage Learning
Bat(.:h Good Slow High No
gradient descent
Stoc?hastlc Good (.thh High Low Yes
gradient descent  annealing)
Mini-batch Good Medium  Medium Yes

gradient descent

Table: Comparison of trade-offs of gradient descent variants



Challenges

» Choosing a learning rate.
» Defining an annealing (learning rate decay) schedule.

» Escaping saddles and suboptimal minima.




Variants of Gradient Descent Algorithms

Momentum

Nesterov accelerated gradient
Adagrad

Adadelta

RMSprop

Adam

Adam extensions




Momentum by Polyak 1964, heavy ball

As has been known at least since the advent of conjugate gradient algorithms, improvements
to gradient descent can be obtained within a first-order framework by using the history of past
gradients. Modern research on such extended first-order methods arguably dates to Polyak [Pol64,
Pol87], whose heavy-ball method incorporates a momentum term into the gradient step. This
approach allows past gradients to influence the current step, while avoiding the complexities of
conjugate gradients and permitting a stronger theoretical analysis. Explicitly, starting from an
initial point zg, x1 € R", the heavy-ball method updates the iterates according to

Tkl = Tk + & (xk - xk_l) = sz(xk), (1.2)

where v > 0 is the momentum coefficient. While the heavy-ball method provably attains a faster
rate of local convergence than gradient descent near a minimum of f, it does not come with global
guarantees. Indeed, [LRP16] demonstrate that even for strongly convex functions the method can
fail to converge for some choices of the step size.!



Momentum in Deep Learning

@ SGD has trouble navigating ravines.

@ Momentum [Qian, 1999] helps SGD accelerate.

@ Adds a fraction y of the update vector of the past step v;_1 to
current update vector v;. Momentum term -y is usually set to 0.9.

Ve = Vi1 +nVeJ(0)

(1)

0=0— V¢
) SGD without momentum ) SGD with momentum

Figure: Source: Genevieve B. Orr




@ Reduces updates for dimensions whose gradients change
directions.

@ Increases updates for dimensions whose gradients point in the
same directions.

| Starting Point

[ :
.’II Dpﬂ-l‘llllflrljl

\/—— %oution

Figure: Optimization with momentum (Source: distill.pub)




Nesterov Accelerated Gradient

@ Momentum blindly accelerates down slopes: First computes
gradient, then makes a big jump.

@ Nesterov accelerated gradient (NAG) [Nesterov, 1983] first makes a
big jump in the direction of the previous accumulated gradient
60 — vv¢_1. Then measures where it ends up and makes a correction,
resulting in the complete update vector.

Ve =y Vi—1 + V(0 — yvi—1)
0 = 9 — V¢

A

Figure: Nesterov update (Source: G. Hinton's lecture 6¢)

(2)




Nesterov ODE: convex

» fis convex and has L-Lipschitz gradient, Nesterov Acceleration (NAG-C):

Ypt1 = Tk — SV f(zk)
ko
k+ 3

» [Weijie Su, Stephen Boyd, Emmanuel Candes’'2016] Nesterov ODE:

Tkl = Yk+1 T (Yk+1 — Yk),

() + %X(t) L VAX() =0,




Nesterov ODE: stfrongly convex

(NAG-SC)

descent [Nes83, Nes13|. For a p-strongly convex objective f with L-Lipschitz gradients, Nesterov’s
accelerated gradient method (NAG-SC) involves the following pair of update equations:

Yrt1 = T — sV f(wp)
1 — 1.3
1+g(yk+l_yk)7 ( )

Tkl = Yk+1 T

between the heavy-ball method and NAG-SC. In particular, these two methods have the same
limiting ODE (see, for example, [WRJ16]):

X(t) +2y/pX () + V(X)) =0, (1.9)



High Resolution Nesterov ODE

» [Bin Shi, Simon S. Du, Michael I. Jordan, Weijie J. Su 2018]

(a) The high-resolution ODE for the heavy-ball method (1.2):
X(t) +2/pX () + 1+ /us)VI(X(t)) =0, (1.10)
with X (0) =z and X(0) = —2*1[8;7\2%0).
(b) The high-resolution ODE for NAG-SC (1.3):
X(8) + 2y/EX(8) + VsV (X ()X (2) + (1 + v/i5) V(X (1) =0, (1.11)

with X (0) = 2o and X (0) = J\fijgw

(c) The high-resolution ODE for NAG-C (1.5):

3

X(t) + zX(t) +VSV2F(X ()X (t) + (1 L 3E

s ) V(X)) =0 (1.12)

for t > 31/5/2, with X (3/5/2) = zo and X (3y/5/2) = —/sV f (o).




Adagraad

@ Previous methods: Same learning rate n for all parameters 6.

@ Adagrad [Duchi et al., 2011] adapts the learning rate to the
parameters (large updates for infrequent parameters, small updates
for frequent parameters).

@ SGD update: 0;11 =60 — 1 - g

o gt = Vy,J(0:)

@ Adagrad divides the learning rate by the square root of the sum of
squares of historic gradients.

@ Adagrad update:

Ui
Ory1 =0 — © 8t 3
T (3)
o G; € R99: diagonal matrix where each diagonal element i,/ is the
sum of the squares of the gradients w.r.t. ; up to time step t
e ¢: smoothing term to avoid division by zero
e (©: element-wise multiplication




®» Pros
» Well-suited for dealing with sparse data.
» Significantly improves robustness of SGD.

» | esser need to manually tune learning rate.

» Cons

» Accumulates squared gradients in denominator.

» Causes the learning rate to shrink and become infinitesimally small.




Adadelto

o Adadelta [Zeiler, 2012] restricts the window of accumulated past

gradients to a fixed size. SGD update:

Al =—n- g
Ory1 = 0 + A0;

e Defines running average of squared gradients E[g?]; at time t:

Elg?]: = vE[g]e—1 + (1 — 7)g?

e ~y: fraction similarly to momentum term, around 0.9

@ Adagrad update:

T
Af, = — ®
t G T c 8t

@ Preliminary Adadelta update:

(4)

(5)



U

Afy = — g (8)
©VEE e
@ Denominator is just root mean squared (RMS) error of gradient:
Ui
AO; = — 9
t RMS[g]tgt ( )

@ Note: Hypothetical units do not match.
@ Define running average of squared parameter updates and RMS:

E[A0%]e = vE[AO%]e—1 + (1 — ) A

RMS[AG], = \/ E[A0?]; + € 10)

@ Approximate with RMS[Af];:_1, replace 7 for final Adadelta update:
RMS[A@]t_l

RMS[gl: " (11)
Orvr1 = 0 + AD;

A9t=—




RMSprop

@ Developed independently from Adadelta around the same time by
Geoff Hinton.

@ Also divides learning rate by a running average of squared
gradients.

@ RMSprop update:

Elg?]: = vE[g?]e—1 + (1 — 7)g?
7
0.1 — 0, —
t+1 t \/E[gz]t n egt

e ~: decay parameter; typically set to 0.9
e 7: learning rate; a good default value is 0.001

(12)



Adam

@ Adaptive Moment Estimation (Adam) [Kingma and Ba, 2015] also

stores running average of past squared gradients v; like Adadelta
and RMSprop.

@ Like Momentum, stores running average of past gradients m;.

my = Bime—1 + (1 — B1)8g:

) (13)
vi = Bavi—1 + (1 — B2)g;
o m;: first moment (mean) of gradients

o v;: second moment (uncentered variance) of gradients
e (31, >: decay rates



@ m; and v; are initialized as O-vectors. For this reason, they are biased
towards O.

@ Compute bias-corrected first and second moment estimates:

A my
meg =
1 - B
A Vi (14)
Vi —
@ Adam update rule:
(9t_|_1 — (9t — ! r/ht (15)




Adam Extensions

@ AdaMax [Kingma and Ba, 2015]

e Adam with /., norm

@ Nadam [Dozat, 2016]

e Adam with Nesterov accelerated gradient




Update Equations

Method Update equation
g: = Vo, J(0:)
91- — 91- —|— AQt
Momentum Af; = —v vi_1 — NGt
NAG Aﬁt = —7 Vt7_71 — UVQJ(Q — ’)/Vt_]_)
Adagrad AO; = — ®
g | R /\%[2691 3
Adadelt NGy = — ]
o T RMSlel
RMSprop Af = — g
© VERHete

Adam A@t = —




Visualization of algorithms

SGD
Momentum - SGD
NAG —— Momentum
Adagrad 7 —= NAG
i) — Adagrad
Adadelta ,,f,;g’;,%;,& agra
V.t g g Ul
Rmsprop ,;;?{:??%2’!{'%%3{'% ,'; Adadelta
,,,,;7/1 A
4 : W ) ,'r(‘,: Rmsprop
T 1
2 A @%%’o,’t,‘d’;/p/;/o, A
SRR,
s
SN
0 o
-2 '.:‘::*;' AT
AR

1.0

EZLEEE optimization on loss surface (b) SGD optimization on saddle point

Figure: Source and full animations: Alec Radford




Comparisons

» Adaptive learning rate methods (Adagrad, Adadelta, RMSprop, Adam) are
parficularly useful for sparse features.

» Adagrad, Adadelta, RMSprop, and Adam work well in similar
circumstances.

» [Kingma and Ba, 2015] show that bias-correction helps Adam slightly
outperform RMSprop.




On Convergence Analysis

» [Xiangyi Chen, Sijia Liu, Ruoyu Sun, Mingyi Hong 2018] On the Convergence
of A Class of Adam-type Algorithms for Non-Convex Optimization, arXiv:

1808.02941:

» Under mild conditions, this class of methods, which we refer to as the "Adam-
type", includes the popular algorithms such as the Adam, AMSGrad and
AdaGrad, can achieve convergence rate of order O(log T/\sqrt{T}) for

nonconvex stochastic optimization.




Parallel and Distributed SGD

=» Hogwild! [Niuv et al., 2011]

» Parallel SGD updates on CPU

» Shared memory access without parameter lock Only works for sparse input data
» Downpour SGD [Dean et al., 2012]

» Multiple replicas of model on subsets of training data run in parallel

» Updates sent fo parameter server;

» ypdates fraction of model parameters

» Delay-tolerant Algorithms for SGD [Mcmahan and Streeter, 2014]
» Methods also adapt to update delays

» TensorFlow [Abadi et al., 2015]
» Computation graph is split info a subgraph for every device
» Communication takes place using Send/Receive node pairs

» FElastic Averaging SGD [Zhang et al., 2015]

» |inks parameters elastically to a center variable stored by parameter server




Additional Strategies for SGD

Shuffling and Curriculum Learning [Bengio et al., 2009]
» Shuffle fraining data after every epoch to break biases

» QOrder training examples to solve progressively harder problems; infrequently used in
practice

Batch normalization [loffe and Szegedy, 2015]
» Re-normalizes every mini-batch to zero mean, unit variance

» NMust-use for computer vision

Early stopping
» “Farly stopping (is) beautiful free lunch” (Geoff Hinton)
Gradient noise [Neelakantan et al., 2015]

» Add Gaussian noise to gradient
» Makes model more robust to poor initializations

» [Escape saddles or local optima



Adam vs. Tuned SGD

» Many recent papers use SGD with learning rate annealing.

» SGD with tuned learning rate and momentum is competitive with Adam
[Zhang et al., 2017D].

» Adam converges faster, but oscillates and may underperform SGD on
some tasks, e.g. Machine Translation [Wu et al., 2016].

» Adam with restarts and SGD-style annealing converges faster and
outperforms SGD [Denkowski and Neubig, 2017].

®» |ncreasing the batch size may have the same effect as decaying the
learning rate [Smith et al., 2017].



Second Order Methods




SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

4 4 Loss

loss / Learning rate decay!

low learning rate

high learning rate

More critical with SGD+Momentum,
less common with Adam

good learning rate

Epoch




First-Order Optimization

Loss

A

(1)
(2)

Use gradient form linear approximation
Step to minimize the approximation

-

w1




Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

A
Loss

w1




Newton Method

Second-Order Optimization

second-order Taylor expansion:

J(0) ~ J(60) + (0 — &) ' VeJ(60) + %(Q—QD)TH(E"— 6o)

Solving for the critical point we obtain the Newton parameter update:

0" =0 — H 'VoJ ()

Q: What is nice about this update?




Second-Order Optimization

second-order Taylor expansion:

J(0) =~ J(60) + (6 — &) ' VeJ(60) + %(Q—QD)TH(Q— 6o)

Solving for the critical point we obtain the Newton parameter update:

0" = 0, — H_lvgj(ﬂo) No hyperparameters!
No learning rate!

Q: What is nice about this update?




But, ...

Second-Order Optimization

second-order Taylor expansion:

J(0) ~ J(60) + (6 — &) ' VeJ(6o) + %(Q—QD)TH(B— 6o)

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N*2) elements

% 1
6 =60,—H VGJ(BD) Inverting takes O(N”3)

N = (Tens or Hundreds of) Millions

Q2: Why is this bad for deep learning?




Second-Order Optimization

0" =0y — H 'VoJ(0,)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n3)), approximate
inverse Hessian with rank 1 updates over time (O(n”2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.




L-BFGS

- Usually works very well in full batch, deterministic mode
l.e. iIf you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting L-BFGS to large-scale, stochastic
setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”




In practice

» Adam is a good default choice in most cases

» Adam+SGD may achieve fast speed and better accuracy

» |f you can afford to do full batch updates then try out L-BFGS (and don't
forget to disable all sources of noise)




Regularizations




Regularization: Add term to loss

L= 3 X Ly, max(0, f(2i W) — f(2i Wy, +1) +

In common use:

AR(W)

L2 regularization  E(W) =232, Wy, (Weight decay)
R

L1 regularization (W) = 22k 221 W]
Elastic net (L1 + L2) R(W) = 2., Zzﬁwﬁz + Wi,




Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014




Regularization: Dropout Example forward

pass with a
p=0.5# probability of keeping a unit active. higher = less dropout 3_|ayer network

using dropout

def train_step(X):
"w" X contains the data """

# forward pass for example 3-layer neural network

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # first dropout mask
H1 *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, H1l) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# backward pass: compute gradients... (not shown)
# perform parameter update... (not shown)




Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear ——

has a tail K\A

is furry —X——  cat
.~ score

has claws +/
mischievous

look

T




Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
2409 ~ 101233 possible masks!
Only ~ 10%? atoms in the universe...




Dropout: Test time

Output Input
(label) (image)

Dropout makes our output random! yI= fw(x

) Random
mask

<

3

Want to “average out” the randomness at test-time
y=F@) = B.[@.9)] = [ p(:)f (@ 2)dz

But this integral seems hard ...




Dropout: Test time

Want to approximate

the integral

Consider a single neuron.

At test time we have: & M = W1T + WY

During training we have: g4

At test time, multiply
by dropout probability

1 1
:Z(’wliﬁ + way) + Z(’wliﬁ + Oy)

1 j |
+ Z(OZL‘ + 0y) + Z(O:E + way)
1

25(’&0156 + way)



Dropout: Test time

def predict(X):

Hl = np.maximum(©, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(@, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time




""" Vanilla Dropout: Not recommended implementation (see notes below)
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train step(X):
"X contains the data """
# forward pass for example 3-layer neural network

H1 = np.maximum(€&, np.dot(Wl, X) + bl)

Dropout Summary

Ul = np.random.rand(*Hl.shape) < p # 7irst dropout mask
H1 *= Ul # drop!

HZ = np.maximum{®, np.dot(WZ2, H1] + bZ)

drop in forward pass

U2 = np.random.rand(*H2.shape) < p # second dropout mask
HZ *= U2 # drop!

out = np.dot(W3, H2) + b3

FH

backward pass: compute gradients... (not shown)

perform parameter update... (not shown)

3+

def predict(X):

# ensembled forward pass
Hl = np.maximum(@, np.dot(Wl, X) + bl)|* p # NOTE: scale the activations
H2 np.maximum(Q, np.dot(W2, H1) + b2) * p # NOTE: scale the activations

scale at test time

out = np.dot(W3, H2) + b3



More common: “Inverted dropout”

p=0.5# probability of keeping a unit active. higher = less dropout

def train_step(X):

# forward pass for example 3-layer neural network

H1 np.maximum(©, np.dot(Wl, X) + bl)

Ul (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
H1 *= Ul # drop!

H2 np.maximum(©, np.dot(W2, Hl) + b2)

u2 (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# backward pass: compute gradients... (not shown)
# perform parameter update... (not shown)

/ test time is unchanged!
def predict(X):
# ensembled forward pass

H1 = np.maximum(@, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(0, np.dot(W2, H1l) + b2)
out = np.dot(W3, H2) + b3




Regularization: Batch normalization

original data zero-centered data normalized data

10 10

10

-10 s -10 s
1g -10 -5 0 5 15 -10 -5 ] 5 10

>
|

np.mean(X, axis = @) X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

f Zwixi + b




Data normalization

Before normalization: classification loss After normalization: less sensitive to small

very sensitive to changes in weight matrix; changes in weights; easier to optimize
hard to optimize

®
o
..AA
®




e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.0. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening



Regularization: Batch Normalization

Batch Normalization [loffe and Szegedy, 2015]

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

(k) _ Rpk)

\/Vﬂf[-f(k)} this is a vanilla
differentiable function...




Batch Normalization [loffe and Szegedy, 2015]

|

FC Usually inserted after Fully
BLN __ Connected or Convolutional layers,
l and before nonlinearity.

tanh

l

FC

!
BN ~(k) _ (*) — E[:I:(k)]

‘ V/Var[z®)]

tanh

L




[loffe and Szegedy, 2015]

Batch Normalization

FC Usually inserted after Fully
BLN Connected or Convolutional layers,
l and before nonlinearity.
tanh
l
FC
] k k
AN Problem: do we (k) _ z®) — E[z®)]
I necessarily want a unit o (k)
tanh gaussian input to a \/Vﬂr[m ]

| tanh layer?




Batch Normalization [loffe and Szegedy, 2015]

Normalize:
k k
) _ +®) _ E[z(®)]
k
\/Var[m( )} Note, the network can learn:
And then allow the network to squash yF) — \/Var[m(k)]

the range if it wants to:

Bk — E[z®)]

to recover the identity
mapping.

y®) = A(R72(k) | gk)




Batch Normalization

Input: Values of x over a mini-batch: B = {1, };
Parameters to be learned: ~, 3

Output: {y; = BN, g(z;)}

1 m
'LLB{_R;%

|

2 2

o e = (@i — )
=1

o~ r; —

T — 1 HB

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

[loffe and Szegedy, 2015]

Improves gradient flow through
the network

Allows higher learning rates
Reduces the strong dependence
on initialization

Acts as a form of regularization
in a funny way, and slightly
reduces the need for dropout,
maybe



Batch Normalization

Input: Values of x over a mini-batch: B = {1 };
Parameters to be learned: ~, 3

Output: {y; = BN, g(x;)}
HB - i X

1 m
o = Y (@i — pg)?
=1

L; — UB
\/0'?3“|‘€

;i +—yZi+ B= BN, s(z;)

}iﬁi —

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

[loffe and Szegedy, 2015]

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g. can be estimated during training
with running averages)



Regularization: Data Augmentation

“Cat” \

> CNN

Load image
and label

Compute
loss




Regularization: Data Augmentation

Load image
and label

Compute
loss

Transform image




Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips




Data Augmentation  pyore complex:

Color Jitter 1. Apply PCA to all [R, G, B]

Simple: Randomize pixels in training set
contrast and brightness

2. Sample a “color offset”
along principal component
directions

3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)




Data Augmentation
Get creative for your problem!

®» Random mix/combinations of
» Translation
= Rotation
» Sfretching

= Shearing

» | ens distortions
» Style tfransform

» Adversarials ... (go crazy)




Randomized Algorithms

Regularization: A common pattern

Training: Add some kind
of randomness

Y = fW($uZ)

Testing: Average out randomness
(sometimes approximate)

y = f(x) = E.[f(z,2)] = / p(2)f (@, 2)dz




Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013




Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
-ractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014




Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016




Randomization can be more:

» Regularization, that we have seen
» Privacy (Differential Privacy): Dwork et al.

» Robustness: Osher et al., Daniel Hsu et al.




Review: LeNet-5

[LeCun et al., 1998]

Image Maps
Input

Output

Ek

W '\ 7 %

Convolutions Fully Connected
Subsampling

Conv filters were 5x5, applied at stride 1

Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]




Popular Architectures

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

28.2

152 layers

\ 16.4

I 22 layers l 19 Iayers

257 I

ILSVRC'15 ILSVRC'14  ILSVRC'14 ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Figure copyright Kaiming He, 2016. Reproduced with permission.




ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

28.2

First CNN-based winner

3.57

ILSVRC'15
ResNet

152 layers | \

16.4

\ 11.7
I 22 layers H 19 Iayers ‘

l»___,_l | 3|3YEI'S | 8 layers |

ILSVRC'14  ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11  ILSVRC'10
GoogleNet VGG AlexNet

Figure copyright Kaiming He, 2016. Reproduced with permission.



Case Study: AlexNet

[Krizhevsky et al. 2012]

i

dense dense

Architecture: . ; e
CONV1 ' e
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5

Max POOL3
FC6

FC7

FC8

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.




Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT p
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORMZ2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores)

dense dense

‘..-- \_ ‘.‘_',_:-“ - A -3

el om 703 7oas \dense
- """‘-'-'-::_Ea- i L T e

- - LT 1

1000

128 Max
Max 128 Max pooling
pooling pooling

204 2048

48

Details/Retrospectives:

- first use of RelL,U

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4

-7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

28.2

: : Deeper Networks
152 layers 1

\ 16.4

11.7

I 22 layers H 19 layers ‘
\\ 6.7 7.3 I
ﬁ I“‘“ | 8 layers || 8 layers |

ILSVRC'15 | ILSVRC'14 ILSVRC'14 | ILSVRC'13 ILSVRC'12 ILSVRC'11l ILSVRC'10
ResNet GoogleNet VGG AlexNet

Figure copyright Kaiming He, 2016. Reproduced with permission.




Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Details:

ILSVRC’14 2nd in classification, 1st in
localization

Similar training procedure as Krizhevsky
2012

No Local Response Normalisation (LRN)
Use VGG16 or VGG19 (VGG19 only
slightly better, more memory)

Use ensembles for best results

FC7 features generalize well to other
tasks

| Softmax |
l FC 1000 |
fc7 | FC 4096 |
fc6 | FC 4096 ]
| Pool |

convs
conv4d | 3x3conv, 384 |

Pool

conv3

3x3 conv, 384

Pool

conv2

5x5 conv, 256

convi 11x11 conv, 96

Input

AlexNet

l Softmax |

| FC 1000 |

l Softmax ] | FC 4096 |

fcg | FC 1000 | | FC 4096 ]
fcr | FC 4096 | Pool ]
fc6 | FC 4096 ] [_3x3conv,512 |

| Pool ] | 3x3conv. 512 |

conv5-3 [ 3x3 conv, 512 ] [ 3x3 conv, 512 ]
conv5-2 | 3x3conv,512 | | 3x8conv,512 |
conv5-1 | 3x3conv, 512 | | Pool |
| Pool | | 3x3conv, 512 |

convd-3 | 3x38conv,512 | [ 3x3conv,512 |
conv4-2 | 3x8conv,512 | [ 8x3conv,512 |
convd-1 | 3x8conv,512 | [ 3x3conv,512 |
| Pool | 1 Pool |

conv3-2 | 3x3conv,256 | | 3x3conv,256 |
conv3-1 | 3x3conv,256 | | 3x3conv,256 |
| Pool | 1 Pool |

conv2-2 | 3x3conv, 128 | | 3x3conv,128 |
conv2-1 | _3x3conv, 128 | | 3x3conv,128 |
| Pool | | Pool |

convi-2 | 3x3conv,64 | | 83x3conv, 64 |
convi-1 | 3x8conv,64 | | 3x3conv,64 |
| | |

Input

Input

VGG16

VGG19



Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONYV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13
(ZFNet)
->7.3% top 5 error in ILSVRC'14

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

AlexNet

Softmax
FC 1000
Softmax FC 4096
FC 1000 FC 4096
FC 4096 Pool
FC 4096 3x3 conv, 512
Pool 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Pool

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

Pool

Pool

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

Pool

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Input

Input

VGG16

VGG19



Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7/x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C?) vs.
7°C? for C channels per layer

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

AlexNet

Softmax
FC 1000
Softmax FC 4096
FC 1000 FC 4096
FC 4096 Pool
FC 4096 3x3 conv, 512
Pool 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Pool

3x3 conv, 51

3x3 conv, 512

3x3 conv, 5

3x3 conv, 512

2
12
3x3 conv, 512
12

3x3 conv, 512

3x3 conv, 5

Pool

Pool

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

Pool Pool
3x3 conv, 128 3x3 conv, 128
3x3 conv, 128 3x3 conv, 128
Pool Pool
3x3 conv, 64 3x3 conv, 64
3x3 conv, 64 3x3 conv, 64
Input Input

VGG16

VGG19



INPUT: [224x224x3]  memory: 224*224*3=150K params: 0 (not counting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: O

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [66x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Softmax

FC 1000

FC 4096

FC 4096

Pool

Pool

Pool

Pool

Pool

Input

VGG16



ImageNet Large Scale Visual Recognition

Deeper Networks

Challenge (ILSVRC) winners

28.2

152 layers
A l
\
A
\
v 16.4
\
\
\
11.7
| 22 layers H 19 layers ‘
'\ 6.7 3
3.57 I_ | 8 layers || 8 layers |
ILSVRC'15 | ILSVRC'14 ILSVRC'14 | ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Figure copyright Kaiming He, 2016. Reproduced with permission.



Case Study: GooglLeNet

[Szegedy et al., 2014]

Deeper networks, with computational

efficiency
_ 22 IayerS | . — ter\ation‘ .
- Efficient “Inception” module N R SR S |
- No FC layers D | |Lanad e

- Only 5 million parameters!
12x less than AlexNet

- |ILSVRC’14 classification winner
(6.7% top 5 error)

Inception module




Case Study: GooglLeNet

[Szegedy et al., 2014]

“Inception module”. design a
good local network topology
(network within a network) and
then stack these modules on
top of each other

Filter
concatenation

Inception module




ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

/ “Revolution of Depth”

28.2

152 layers |

3.57

ILSVRC'15
ResNet

P2 layers H 19 Iayers |

| 8 layers || 8 layers I
LSVRC'14  ILSVRC'14  ILSVRC'13 ILSVRC'12 ILSVRC'11  ILSVRC'10
oogleNet VGG AlexNet

Figure copyright Kaiming He, 2016. Reproduced with permission.



Case Study: ResNet ==
[He et al., 2015] e v

1 3x3 conv, 64 |
: : T relu TR
Very degp networks using residual F(X) + X e
connections =
| SXSCoémI
- 152-layer model for ImageNet Fo0) X e
, .o . . X
- ILSVRC’15 classification winner Ire'” identity CEm )
(3.57% tOp 5 error) | 3x3 conv, 128 ]
- Swept all classification and ——
detection competitions in X T ol
ILSVRC’15 and COCQ’15! Residual block ——
1 3x3 conv, 64 |
X nv, 64
1 Pool |

Input ]




Case Study: ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

56-layer
é 56-I
= -layer .
(]
o 2
£ o)
C 4+ _
8 % 20-layer
= —
20-layer
[terations [terations

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it's not caused by overfitting!




Case Study: ResNet

[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

The deeper model should be able to perform at
least as well as the shallower model.

A solution by construction is copying the learned
layers from the shallower model and setting
additional layers to identity mapping.




Case Study: ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

H(x) = F(x) + X T relu
oo~ N =FX) TN Fo e x
Use layers to
fit residual
X F(x) = H(x) - X
relu RO Wrelu identity in(st)ead (()f)
| H(x) directly
X X

“Plain” layers Residual block




Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:

Stack residual blocks
Every residual block has
two 3x3 conv layers
Periodically, double # of
filters and downsample
spatially using stride 2
(/2 in each dimension)
Additional conv layer at
the beginning

No FC layers at the end
(only FC 1000 to output
classes)

T relu
F(x) + x
F(x) Xrelu
X

Residual block

X
identity

Softmax ]

EC 1000 J@«—— No FC layers

Pool |

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128, /2

3x3 gonv 64

3x3 conv, 64

3x3 Conv. 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Pool |

Input ]

besides FC
1000 to
output
classes

Global
average
pooling layer
after last
conv layer



Case Study: ResNet

[He et al., 2015]

Total depths of 34, 50, 101, or
152 layers for ImageNet

Softmax |

FC 1000 J

Pool |

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv.

3x3 conv

3x3 conv.

3x3 conv.

3x3 conv, 128

3x3 conv, 128, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

BgXe conv 64

3x3 conv, 64

Pool |

7x7 conv, 64, /2 |

Input |




Case Study: ResNet

[He et al., 2015]

28x28x256
output
1x1 conv, 256 filters projects
back to 256 feature maps

For deeper networks (28x28x256)
(ResNet-50+), use “bottleneck”
layer to improve efficiency 3x3 conv operates over

only 64 feature maps

!

1x1 conv, 64 filters
to project to
28x28x64

(similar to GooglLeNet)

28x28x256
input




Case Study: ResNet

[He et al., 2015]

Training ResNet in practice:

- Batch Normalization after every CONV layer

- Xavier/2 initialization from He et al.

- SGD + Momentum (0.9)

- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256

-  Weight decay of 1e-5

- No dropout used




Case Study: ResNet

[He et al., 2015]

Experimental Results

- Able to train very deep
networks without degrading
(152 layers on ImageNet, 1202
on Cifar)

- Deeper networks now achieve
lowing training error as
expected

-  Swept 1st place in all LSVRC
and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

* 1st places in all five main tracks
* ImageNet Classification: “Ultra-deep” (quote Yann) 152-layer nets
* ImageNet Detection: 16% better than 2nd
* ImageNet Localization: 27% better than 2nd
* COCO Detection: 11% better than 2nd
* COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6%
top 5 error) -- better than “human
performance”! (Russakovsky 2014)




Improving ResNets...

Deep Networks with Stochastic Depth

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and
training time through short networks during
training

- Randomly drop a subset of layers during each
training pass

- Bypass with identity function

- Use full deep network at test time




Improving ResNets...
Aggregated Residual Transformations for Deep

Neural Networks (ResNeXt)

[Xie et al. 2016] 256-d out

- Also from creators of
ReSNet 256-d out
- Increases width of
residual block through T
multiple parallel
pathways f
(“cardinality”)
- Parallel pathways
similar in spirit to
Inception module

256-d in




ResNet in Noisy Ensembles:
Feynman-Kac Equations

» ResNet as a discretization of transport PDE
x(0) = X,
3 x(tis1) = x(tx) + At - F(x(tx), W(tk)), k=0,1,...,L—1,
y = f(x(1)),
F _
where F = = F, and f(x) = softmax(Wgc - x).
© Continuous limit
T = 2 + Fay) d);—(tt) — F(X(t)? W(t))7
x(0) = X,
y = f(x(1)),
Plain Net: =
Rea;,r\llet:et XI+X1I+:1 X f_(;lle) characteristic curves of the following transport equation (TE)

24 (x, 1) + Flx, W(1) - Vu(x, ) = 0, x € B,




[Boo Wang, B. Yuan, Zuogiang Shi, Stan Osher, arXiv:1811 .10745]

» Feynman-Kac Equation by injective Noise:

{% + F(x, W(t)) - Vu+ 30°Au=0, x€R’, t€[0,1),

U(Xa 1) = f(X)
1 0.4 1
0.8} " 02 08} 0.1
0.6} 0 06}
\ ) 0
04¢ \, (R 1 -0.2 0.4} \__/ /
> ) A /
02 i ( [ 7 \\ M\ _04 02 ) (/ -O 1
NSK | _
ol eV AN\ By f\\ [
0 02 04 06 08 1 0 02 04 06 08 1
(a) o =0.01 (b) o0 = 0.1

Figure: (a) and (b) are solutions of the convection-diffusion equation,
Eq. (1), at t = 0 with different diffusion coefficients o.




Provable Robustness

| O. Ladyzhenskaja ef al. Linear and Quasilinear Equations of Parabolic Type]

Theorem (Stability) Let F(x,t) be Lipschitz in both x and t, and
f(x) is bounded. For the following terminal value problem of
convection-diffusion equation (o # 0)

{thl(X, t) +F(Xa W(t)) - Vu(x, t) + %02AU(X, t)=0, x¢€ Rd’ t €[0,1),
u(x, 1) = f(x).

we have

’u(X + 5, O) — U(X, O)‘ < C (H(SH2>

O

for some constant &« > 0 if 0 < 1. C is a constant that depends
on d, ||f]|eo, and HFHLS?t-



Reference

» [Abadiet al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Man, D., Mongaq,
R., Moore, S., Murray, D., Shlens, J., Steiner, B., Sutskever, |., Tucker, P., Vanhoucke,
V., Vasudevan, V., Vinyals, O., Warden, P., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.

» [Bello et al., 2017] Bello, I., Zoph, B., Vasudevan, V., and Le, Q. V. (2017). Neural
Optimizer Search with Reinforcement Learning. In Proceedlngs of the 34th
International Conference on Machine Learning.

» [Bengio ef al., 2009] Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009).
Curriculum Ieormng Proceedmgs of the 26th annual international conference on
machine learning, pages 41-48.

» [Dean et al, 2012] Dean, J., Corrado, G. S., Mongaq, R., Chen, K., Devin, M., Le, Q.
V., Mao, M. Z., Ranzato, M. A., Senior, A., Tucker, P., Yang, K., and Ng, A. Y. (2012).
Large Scale Distributed Deep Networks. NIPS 2012: Neural Information Processing
Systems, pages 1-11.

» [Denkowski and Neubig, 2017] Denkowski, M. and Neubig, G. (2017). Stronger
Baselines for Trustable Results in Neural Machine Translation. In Workshop on Neural
Machine Translation (WNMT).




Reference

» [Dinh et al., 2017] Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. (2017). Sharp
Minima Can Generalize For Deep Nets. In Proceedings of the 34 th International
Conference on Machine Learning.

» [Dozat, 2016] Dozat, T. (2016). Incorporating Nesterov Momentum intfo Adam. ICLR
Workshop, (1):2013-2016.

» [Dozat and Manning, 2017] Dozat, T. and Manning, C. D. (2017). Deep Biaffine
Attention for Neural Dependency Parsing. In ICLR 2017.

» [Duchietal.,, 2011] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive
Subgradient Methods for Online Learning and Stochastic Optimization. Journal of
Machine Learning Research, 12:2121-2159.

®» [Huang et al.,, 2017] Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and
Weinberger, K. Q. (2017). Snapshot Ensembles: Train 1, get M for free. In
Proceedings of ICLR 2017.

» [|offe and Szegedy, 2015] loffe, S. and Szegedy, C. (2015). Batch Normalization:
Accelerating Deep Network Training by Reducing Internal Covariate Shift.
arXiv preprint arXiv:1502.03167v3.

» [Ruder, 2016] Ruder, S. (2016). An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747.




Reference

= [Nesterov, 1983] Nesterov, Y. (1983). A method for unconstrained convex minimization
problem with the rate of convergence o(1/k2). Doklady ANSSSR (translated as
Soviet.Math.Docl.), 269:543-547.

» [Niu et al, 2011] Niu, F., Recht, B., Christopher, R., and Wright, S. J. (2011). Hogwild!: A Lock-
Free Approach to Parallelizing Stochastic Gradient Descent. pages 1-22.

®» [Qian, 1999] Qian, N. (1999). On the momentum term in gradient descent learning
algorithms. Neural networks : the official journal of the International Neural Network
Society, 12(1):145-151.

» [Wang, Yuan, Shi, Osher, 2018] Bao Wang, B. Yuan, Z. Shi, S. Osher (2019). ResNets
Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies,
arXiv:1811.10745, NeurlPS 2019.

» [Zeiler, 2012] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. arXiv
preprint arXiv:1212.5701.

» [Zhang et al., 2015] Zhang, S., Choromanska, A., and LeCun, Y. (2015). Deep learning with
Elastic /]A\vzeAtoging SGD. Neural Information Processing Systems Conference (NIPS 20135),
pages 1-24.




Thank you!




