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Some Theories are limited but help:
´ Approximation Theory and Harmonic Analysis : What functions are represented 

well by deep neural networks, without suffering the curse of dimensionality and 
better than shallow networks? 
´ Sparse (local), hierarchical (multiscale), compositional functions avoid the curse 

dimensionality

´ Group (translation, rotational, scaling, deformation) invariances achieved as depth 
grows 

´ Optimization: What is the landscape of the empirical risk and how to optimize it 
efficiently?
´ Wide networks may have simple landscape for GD/SGD algorithms …

´ Generalization: How can deep learning generalize well without overfitting the 
noise? 
´ Implicit regularization: SGD finds flat local maxima, Max-Margin classifier?

´ “Benign overfitting”?



Optimization vs. Generalization

´ Consider the empirical risk minimization under i.i.d. samples

´ The population risk with respect to unknown distribution

´ Fundamental Theorem of Machine Learning (for 0-1 misclassification loss, 
called ’errors’ below)
´ How to make training loss/error small? – Optimization issue
´ How to make generalization gap small? – Model Complexity issue
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Why big models generalize well?
n=50,000
d=3,072
k=10

CIFAR10

Model parameters p/n
Train 
loss

Test 
error

CudaConvNet 145,578 2.9 0 23%

CudaConvNet
(with regularization)

145,578 2.9 0.34 18%

MicroInception 1,649,402 33 0 14%

ResNet 2,401,440 48 0 13%

What happens when I turn off the regularizers?

Ben Recht et al. 2016



The Bias-Variance Tradeoff?

Deep  
models

Models where p>20n are common



Over-parameterized modelsA puzzle: why non overfitting with deep nets without regularization?

As model complexity grows (p>n), training error goes down to zero, but test error does not 
increase. Why overparameterized models do not overfit here?  -- Tommy Poggio, 2018



´ Optimization: how to achieve zero training loss/error in deep learning?
´ Overparameterized wide networks can do this via SGD

´ Landscape of training loss of such networks is simple! (Joan Bruna, Rong Ge et al.)

´ Generalization: why overparameterized models do not overfit?
´ Generalization gap is determined by the Rademacher Complexity (Lipschitz) of

networks, rather than number of parameters (Peter Bartlett et al.)

´ Implicit regularization: GD/SGD finds max margin classifiers (Nati Srebro et al.)

´ Misha Belkin et al.: Double descent for under-parameterized models vs. single 
descent for over-parameterized models



What’s the Landscape of Empirical 
Risks and How to optimize them 
efficiently?
Over-parameterized models lead to simple landscapes while SGD finds 
flat minina.



Sublevel sets and topology

•Given loss                         we consider its representation in terms 
of level sets:  

•A first notion we address is about the topology of the level sets    . 

• In particular, we ask how connected they are, i.e. how many 
connected components       at each energy level   ? 

Analysis of Non-convex Loss Surfaces
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Topology of Non-convex Risk Landscape



Weaker: P.1, no spurious local valleys3.1 Spurious valleys and connectivity of sub-level sets

Given a parameter space Θ and a loss function L(θ) as in (2), for all c ∈ R we define
the sub-level set of L as

ΩL(c) = {θ ∈ Θ : L(θ) ≤ c}.

We consider two (related) properties of the optimization landscape. The first one is
the following:

P.1 Given any initial parameter θ0 ∈ Θ, there exists a continuous path θ : t ∈ [0, 1] #→
θ(t) ∈ Θ such that:

(a) θ(0) = θ0

(b) θ(1) ∈ argminθ∈Θ L(θ)

(c) The function t ∈ [0, 1] #→ L(θ(t)) is non-increasing.

With a little abuse of notation, in the following we denote θt = θ(t). Since, in practice,
the loss (2) is minimized with a SGD type algorithm, then property P.1 is a desirable
property, if we wish the algorithm to converge to an optimal parameter. As pointed out
in [14], property P.1 implies that L has no strict poor (i.e. non global) local minima.
The absence of generic (i.e. non-strict) bad local minima is guaranteed if the path θt
is such that the function L(θt) is strictly decreasing. For many activation functions
used in practice (such as the ReLU ρ(z) = z ∧ 0), the parameter θ determining the
function Φ(·; θ) is determined up to the action of a symmetries group (e.g., in the case
of the ReLU, ρ is an homogeneous function). This already prevents us from having
strict minima: for any value of the parameter θ ∈ Θ there exists a manifold Uθ ⊂ Θ
intersecting θ along which the loss function is constant. Property P.1 tells us something
more than the absence of poor strict local minima. A way to interpret such property
could be with defining the concept of spurious valleys.

Definition 1 We define a spurious valley as a connected component of a sub-level set
ΩL(c) which does not contain global minima of the loss L(θ).

In view of the above definition, property P.1 can be re-phrased as: the loss function

admits no spurious valleys. This means that it is always possible to move from any
point in the parameter space to a global minima, without increasing the loss.

The second property we consider is strictly stronger than P.1:

P.2 ΩL(c) is path-connected for all c.

This property not only implies that there is no spurious valley, but also that there is

only one global valley: any two optimal parameter values can be connected with a
path along which the loss function is constant.
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•A first notion we address is about the topology of the level sets    . 

– In particular, we ask how connected they are, i.e. how many connected 
components       at each energy level   ?  

•This is directly related to the question of global minima: 

•We say E is simple in that case. 

•The converse is clearly not true.

Analysis of Non-convex Loss Surfaces

Nu

⌦u

u

Proposition: If Nu = 1 for all u then E
has no poor local minima.

(i.e. no local minima y⇤ s.t. E(y⇤) > miny E(y))

The landscape has no spurious local valleys.



Overparameterized LN -> Single Basin

Bruna, Freeman, 2016



Venturi-Bandeira-Bruna’18

Corollary 7 For two-layer NNs Φ(x; θ) = UρWx, the empirical loss function (12)
admits no spurious valleys in the over-parametrized regime

p ≥ N .

Proof We just need to notice that since the functions ψw ∈ VX are functions on X
and since |X | ≤ N , then dim(VX ) ≤ N . The proof is concluded by applying Theorem
5.

Moreover, we notice that the minimum empirical loss is 0 when that the kernelized
input data points ϕ(x1), . . . ,ϕ(xN) are independent elements of VX .

This result is in line with previous works that considered the landscape of empirical
risk minimization for half-rectified deep networks [25, 27]. However, its proof illus-
trates the danger of studying ERM landscapes in the overparamatrised regime, since
it bypasses all the geometric and algebraic properties needed in the population risk
setting – which may be more relevant to understand the generalization properties of
the model.

4.3 Linear Networks

In the case of linear networks one can show that the absence of spurious valleys holds
in non-over-parametrized regimes as well and for networks of any depth:

Φ(x; θ) = WK+1 · · ·W1x , (13)

where θ = (WK+1,WK , . . . ,W2,W1) ∈ Rn×pK+1 × RpK+1×pK × · · ·Rp2×p1 × Rp1×n.

Theorem 8 For linear networks (13) of any depth K ≥ 1 and of any layer widths
pk ≥ 1, k ∈ [1, K + 1], and input-output dimensions n, m, the square loss function (2)
admits no spurious valleys.

This result improves the one proved in [14], since we do not need any assumptions
on the widths of the layers. It is also in line with other results for linear networks
[20]. While our result it is not informative on the order of saddle points, it holds
with no assumption on the rank of the weights Wk nor ΣX ,ΣXY . Our proof highlights
the structural symmetries of linear neural network architectures and it is reported in
Appendix A.3.

5 Proof technique

The proof of Theorem 5 consists of proving that property P.1 holds when p ≥ q. We
start by proving it when ρ(z) = z, i.e. in the case of linear networks

Φ(x; θ) = UWx. (14)

9

•A first notion we address is about the topology of the level sets    . 

– In particular, we ask how connected they are, i.e. how many connected 
components       at each energy level   ?  

•This is directly related to the question of global minima: 

•We say E is simple in that case. 

•The converse is clearly not true.

Analysis of Non-convex Loss Surfaces

Nu

⌦u

u

Proposition: If Nu = 1 for all u then E
has no poor local minima.

(i.e. no local minima y⇤ s.t. E(y⇤) > miny E(y))

Project 2 8

�(x) = ↵⌃̂�1
W (µ̂1 � µ̂0)

µ̂k =
1

|Ck|
X

i2Ck

xi

⌃̂W =
X

k

X

i2Ck

(xi � µ̂k)(xi � µ̂k)
T

R̂n(✓) =
1

n

nX

i=1

`(yi, f(xi; ✓)) +R(✓)

R(✓) = Ex,y⇠P `(y, f(x; ✓))

R(✓) = R̂n(✓)| {z }
training loss/error

+ R(✓)� R̂n(✓)| {z }
generalization loss/error

Symmetry f(Wi) = f(QWi) (Q 2 GL(Rnl)) helps remove the network width constraint.



2-layer Neural Networks
[Venturi, Bandeira, Bruna, 2018]

Definition 3 Let VX
.
= span⟨{ψw : X → R : w ∈ Rn}⟩. We call effective intrinsic

dimension of the neural network Φ(x; θ) = UρWx the value q = dim(VX ). We say that
the network has finite effective intrinsic dimension if q is finite.

Notice that if (X, Y ) are distributed accordingly to an empirical probability dis-
tribution P̂ = N−1

∑N
i=1 δ(xi,yi), any network Φ(x; θ) = UρWx has effective intrinsic

dimension bounded by N .

Remark 4 Property (7) can be also understood in the framework of Reproducing
Kernel Hilbert Space (RKHS). Assume that there exists a kernel (i.e. continuous and
PSD) function K : Rn × Rn &→ R, with associated RKHS H (i.e. the space spanned
by the functions ϕ(x) : y ∈ Rn &→ K(x, y), for x ∈ Rn), such that the linear space
V defined in (6) is a finite linear subspace of the RKHS H. Then the scalar product
defined in (7) coincides with the inner product on H. This approach follows the ideas
of works [4, 28].

4 Main result

We now state the main result of our work.

Theorem 5 The loss function

L(θ) = E∥Φ(X ; θ)− Y ∥2

of any network Φ(x; θ) = UρWx with effective intrinsic dimension q < ∞ admits
no spurious valleys, in the over-parametrized regime p ≥ q. Moreover, in the over-
parametrized regime p ≥ 2q there is only one global valley.

The above result can be re-phrased as follows: if the network is such that any of
its output units Φi can be chosen from the whole space spanned by its filter functions
(i.e. from VX defined in (9)), then the associated optimization problem is such that
there always exists a descent path to an optimal solution, for any initialization of the
parameters. Indeed, the over-parametrized regime that we consider (p ≥ q) makes
possible to express all the output units Φi as any element of the filter functions space
VX .

We notice that the same optimal representation functions Φ(·; θ) could also be
obtained using a generalized linear model, where the representation function has the
linear form Φ(x; θ) = ⟨θ,ϕ(x)⟩, with the same underlying family of representation
functions VX . A main difference between the two models is that the former requires
the choice of a non-linearity, that is of any activation function ρ, while the latter
implies the choice of a kernel functions. The non-trivial fact captured by our result
is the following: when the capacity of network is large enough to match a generalized
linear model, then the problem of optimizing the square loss (2) of the network, which
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• Reproducing Kernel Hilbert Spaces (RKHS) are exploited in the proof!
• Matrix factorizations are of similar ideas. 



Rong GE et al.

´ For neural networks, not all local/global min are connected, even in the 
overparametrized setting.

´ Solutions that satisfy dropout stability are connected.

´ Possible to switch dropout stability with noise stability
(used for proving generalization bounds for neural nets)



Thank you!


