

Deep Learning: Optimization and Generalization

Yuan YAO

HKUST

Some Theories are limited but help:

- Approximation Theory and Harmonic Analysis : What functions are represented well by deep neural networks, without suffering the curse of dimensionality and better than shallow networks?
 - Sparse (local), hierarchical (multiscale), compositional functions avoid the curse dimensionality
 - Group (translation, rotational, scaling, deformation) invariances achieved as depth grows
- Optimization: What is the landscape of the empirical risk and how to optimize it efficiently?
 - Wide networks may have simple landscape for GD/SGD algorithms ...
- Generalization: How can deep learning generalize well without overfitting the noise?
 - Implicit regularization: SGD finds flat local maxima, Max-Margin classifier?
 - "Benign overfitting"?

Optimization vs. Generalization

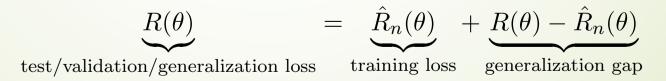
Consider the empirical risk minimization under i.i.d. samples

$$\hat{R}_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(x_i; \theta)) + \mathcal{R}(\theta)$$

The population risk with respect to unknown distribution

$$R(\theta) = \mathbf{E}_{x, y \sim P} \ell(y, f(x; \theta))$$

- Fundamental Theorem of Machine Learning (for 0-1 misclassification loss, called 'errors' below)
 - How to make training loss/error small? Optimization issue
 - How to make generalization gap small? Model Complexity issue



Why big models generalize well?

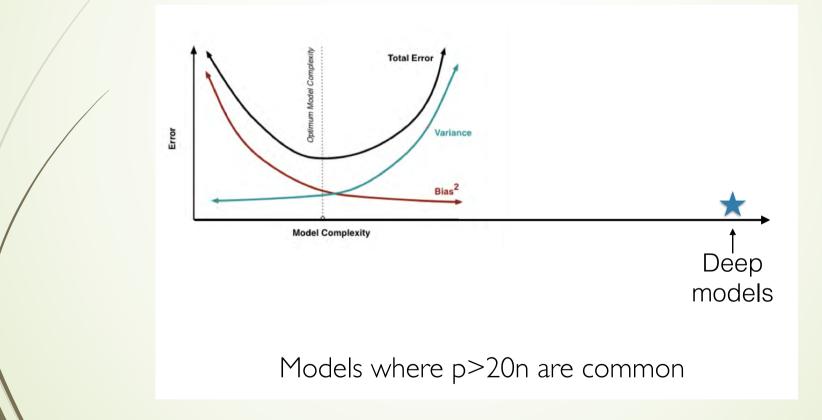
n=50,000 d=3,072 k=10

What happens when I turn off the regularizers?

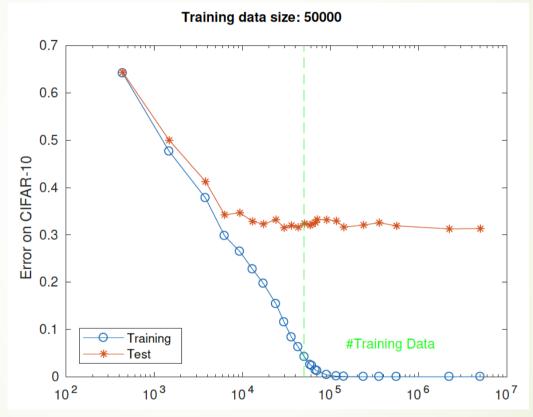
Model	parameters	<u>p/n</u>	Train <u>Ioss</u>	lest <u>error</u>
CudaConvNet	145,578	2.9	0	23%
CudaConvNet (with regularization)	145,578	2.9	0.34	l 8%
MicroInception	1,649,402	33	0	I 4%
ResNet	2,401,440	48	0	۱3%

Ben Recht et al. 2016

The Bias-Variance Tradeoff?



Over-parameterized models



As model complexity grows (p>n), **training error goes down to zero**, but **test error does not increase**. Why overparameterized models do not overfit here? -- Tommy Poggio, 2018

Optimization: how to achieve zero training loss/error in deep learning?

- Overparameterized wide networks can do this via SGD
- Landscape of training loss of such networks is simple! (Joan Bruna, Rong Ge et al.)
- Generalization: why overparameterized models do not overfit?
 - Generalization gap is determined by the Rademacher Complexity (Lipschitz) of networks, rather than number of parameters (Peter Bartlett et al.)
 - Implicit regularization: GD/SGD finds max margin classifiers (Nati Srebro et al.)
 - Misha Belkin et al.: Double descent for under-parameterized models vs. single descent for over-parameterized models

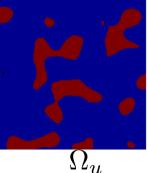
What's the Landscape of Empirical Risks and How to optimize them efficiently?

Over-parameterized models lead to simple landscapes while SGD finds flat minina.

Sublevel sets and topology

• Given loss $E(\theta)$, $\theta \in \mathbb{R}^d$, we consider its representation in terms of level sets:

$$E(\theta) = \int_0^\infty \mathbf{1}(\theta \in \Omega_u) du \ , \ \Omega_u = \{ y \in \mathbb{R}^d \ ; \ E(y) \le u \}$$

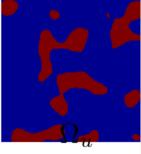


- A first notion we address is about the topology of the level sets
- In particular, we ask how connected they are, i.e. how many connected components N_u at each energy level u?

Topology of Non-convex Risk Landscape

- ullet A first notion we address is about the topology of the level sets
 - In particular, we ask how connected they are, i.e. how many connected components N_u at each energy level u?
- This is directly related to the question of global minima:

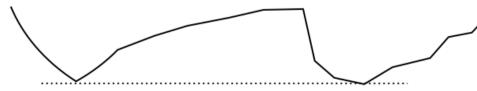
Proposition: If $N_u = 1$ for all u then E has no poor local minima.



(i.e. no local minima y^* s.t. $E(y^*) > \min_y E(y)$)

• We say *E* is *simple* in that case.

• The converse is clearly not true.



Weake^N^uP.1, no spuriou^s local valleys

Given a parameter space Θ and a loss function $L(\theta)$ as in (2), for all $c \in \mathbb{R}$ we define the sub-level set of L as

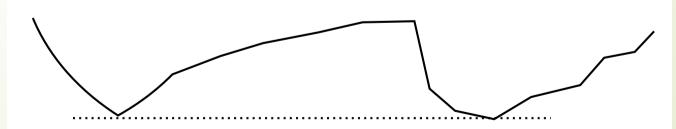
Proposition: If $N_u^{\Omega \neq e} \ddagger \text{for} a \mathbb{H}^{\theta} \neq \text{then } E$

has We consider two (related) properties of the optimization landscape. The first one is the following:

P.1 Given any *initial* parameter $\theta_0 \in \Theta$, there exists a continuous path $\theta: t \in [0,1] \mapsto (\mathbf{i}, \boldsymbol{\theta}, \boldsymbol{\theta})$ and $\boldsymbol{\theta}$ and $\boldsymbol{\theta}$ in the initial y^* s.t. $E(y^*) > \min_y E(y)$

 S_{a}

- (a) $\theta(0) = \theta_0$
- (b) $\theta(1) \in \arg \min_{\theta \in \Theta} L(\theta)$
- (c) The function $t \in [0, 1] \mapsto L(\theta(t))$ is non-increasing.



The landscape has no spurious local valleys.

Overparameterized LN -> Single Basin

 $E(W_1, \ldots, W_K) = \mathbb{E}_{(X,Y)\sim P} || W_K \ldots W_1 X - Y ||^2$.

Proposition: [BF'16]

- 1. If $n_k > \min(n, m)$, 0 < k < K, then $N_u = 1$ for all u.
- 2. (2-layer case, ridge regression) $E(W_1, W_2) = \mathbb{E}_{(X,Y)\sim P} ||W_2 W_1 X - Y||^2 + \lambda (||W_1||^2 + ||W_2||^2)$ satisfies $N_u = 1 \forall u$ if $n_1 > \min(n, m)$.

• We pay extra redundancy price to get simple topology.

Bruna, Freeman, 2016

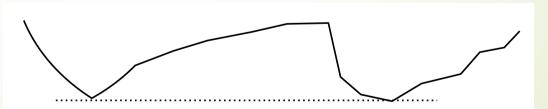
Venturi-Bandeira-Bruna'18

 N_{u}

 $\Phi(x;\theta) = W_{K+1} \cdots W_1 x , \qquad (13)$ **Proposition:** If $N_{u} = 1$ for all u then Ewhere $\theta = (W_{K+1}, W_K, \dots, W_2, W_1) \in \mathbb{R}^{n \times p_{K+1}} \times \mathbb{R}^{p_{K+1} \times p_K} \times \dots \mathbb{R}^{p_2 \times p_1} \times \mathbb{R}^{p_1 \times n} \cdot \Omega_u$ has no poor local minima. Ω_u **Theorem 8** For linear networks (13) of any depth $K \ge 1$ and of any layer widths $p_k \ge 1, k \in [1, K+1], \text{ and input-output dimensions} m_k \text{ be square loss function (2)}$ admits no spurious valleys.

U

Symmetry $f(W_i) = f(QW_i)$ ($Q \in GL(\mathbb{R}^{n_l})$) helps remove the network width constraint.



2-layer Neural Networks [Venturi, Bandeira, Bruna, 2018]

Theorem 5 The loss function

$$L(\theta) = \mathbb{E} \|\Phi(X;\theta) - Y\|^2$$

of any network $\Phi(x;\theta) = U\rho Wx$ with effective intrinsic dimension $q < \infty$ admits no spurious valleys, in the over-parametrized regime $p \ge q$. Moreover, in the overparametrized regime $p \ge 2q$ there is only one global valley.

- Reproducing Kernel Hilbert Spaces (RKHS) are exploited in the proof!
- Matrix factorizations are of similar ideas.

Rong GE et al.

- For neural networks, not all local/global min are connected, even in the overparametrized setting.
- Solutions that satisfy **dropout stability** are connected.
- Possible to switch dropout stability with noise stability (used for proving generalization bounds for neural nets)

Thank you!

