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Some Theories are limited but help:

» Approximation Theory and Harmonic Analysis : What functions are represented
well by deep neural networks, without suffering the curse of dimensionality and
better than shallow networks?

» Sparse (local), hierarchical (multiscale), compositional functions avoid the curse
dimensionality

» Group (franslation, rotational, scaling, deformation) invariances achieved as depth
grows

» Optimization: What is the landscape of the empirical risk and how to optimize it
efficiently?

» Wide networks may have simple landscape for GD/SGD algorithms ...

» (Generalization: How can deep learning generalize well without overfitting the
noise?

» |mplicit regularization: SGD finds flat local maxima, Max-Margin classifiere

= “Benign overfitting”e



Optimization vs. Generalization

» Consider the empirical risk minimization under i.i.d. samples

Ra0) =~ 3 bl F(a::0)) + R(6)
1=1

» The population risk with respect to unknown distribution
R(0) = Eg yprl(y, f(;0))

» Fundamental Theorem of Machine Learning (for O-1 misclassification loss,
called 'errors’ below)

®» How to make training loss/error smalle — Optimization issue

» How to make generalization gap smallz — Model Complexity issue

SN~~~ N~ = ~~ -

test /validation/generalization loss training loss  generalization gap



Why big models generalize well?
W Kl ds CreriO 02

k=10
What happens when | turn off the regularizers?

Train Test
Model parameters p/n loss  error
CudaConvNet 145,578 2.9 0 23%
CudaConvNet 145,578 29 0.34 | 8%
(with regularization)
Microlnception 1,649,402 33 0 | 4%
ResNet 2,401,440 48 0 1 3%

Ben Recht et al. 2016




The Bias-Variance Tradeoffe
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Over-parameterized models

Training data size: 50000
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As model complexity grows (p>n), training error goes down to zero, but test error does not
increase. Why overparameterized models do not overfit heree -- Tommy Poggio, 2018



» Optimization: how to achieve zero training loss/error in deep learninge

» Overparameterized wide networks can do this via SGD

» | andscape of fraining loss of such networks is simple! (Joan Bruna, Rong Ge et al.)
» Generalization: why overparameterized models do not overfite

» Generalization gap is determined by the Rademacher Complexity (Lipschitz) of
networks, rather than number of parameters (Peter Bartlett et al.)

» |mplicit regularization: GD/SGD finds max margin classifiers (Nati Srebro et al.)

= Misha Belkin et al.: Double descent for under-parameterized models vs. single
descent for over-parameterized models



What's the Landscape of Empirical
Risks and How to optimize them
efficientlye

Over-parameterized models lead to simple landscapes while SGD finds
flat minina.




Sublevel sets and topology

*Given loss E(9) ,0 € R? , we consider its representation in terms
of level sets!

E(G)z/oool(HEQu)du, Q. ={yeR?; E(y) <u}

u

o A first notion we address is about the topclogy of the level sets

e |n particular, we ask how connected they are, 1.e. how many
connected components N, at each energy level u”?



Topology of Non-convex Risk Landscape

o A first notion we address is about the topology of the level sets
—|In particular, we ask how connected they are, i.e. how many connected
components IV, at each energy level u?
* [his is directly related to the guestion of global minima:

Proposition: If N, = 1 for all v then E
has no poor local minima.
(i.e. no local minima y* s.t. E(y*) > min, E(y))

VA /A YN/ [ 1 If | ~ NOY OV
*\\e say £ Is simple In that case

e [Ne converse Is Clearly not true.




Weaker: P.1, no spurious local valleys

Given a parameter space © and a loss function L(f) as in (2), for all ¢ € R we define

the sub-level set of L as
Quic)={0 €0 : L) <c}

We consider two (related) properties of the optimization landscape. The first one is
the following:

P.1 Given any initial parameter 6y € O, there exists a continuous path 6 : ¢ € [0, 1] —
6(t) € © such that:

6(0) = 6y
6(1) € argmingeg L(0)

(a)
(b)
)

(¢) The function ¢t € [0,1] — L(A(t)) is non-increasing.

The landscape has no spurious local valleys.



Overparameterized LN -> Single Basin

E(Wy,...,Wk) =Exy)p|Wk ... W1 X = Y|?.

Proposition: [BF’16]

I e min(w, m) 0=k =K Sthen N, =1 for allte.

2. (2-layer case, ridge regression)
E(W1,W2) = E(x y)~plWoW1 X — Y||2 + A(||WA]|* + [ W2]?)
satisfies N, = 1 V u if ny > min(n, m).

*\/\/e pay extra redundancy price to get smple topology.

Bruna, Freeman, 2016



Venturi-Bandeira-Bruna’' 18

(I)(LU, (9) — WK—H SR Wl.CC - (13)
where 0 = (Wi 1, Wk, ..., Wo, W) € R"*PE+1 x RPE+1XPK x ... RP2XPL x RPIX™,

Theorem 8 For linear networks (13) of any depth K > 1 and of any layer widths
pr > 1, k€ [l, K+ 1], and input-output dimensions n, m, the square loss function (2)
admits no spurious valleys.

Symmetry f(W;) = f(QW;) (Q € GL(R™)) helps remove the network width constraint.




2-layer Neural Networks
[Venturi, Bandeira, Bruna, 2018]

Theorem 5 The loss function
L(6) = E[|®(X;6) - Y|

of any network ®(x;0) = UpWax with effective intrinsic dimension ¢ < oo admits
no spurtous valleys, in the over-parametrized reqgime p > q. Moreover, in the over-
parametrized regime p > 2q there is only one global valley.

» Reproducing Kernel Hilbert Spaces (RKHS) are exploited in the proof!
« Matrix factorizations are of similar ideas.



Rong GE et al.

= For neural networks, not all local/global min are connected, even in the
overparametrized setfing.

» Solutions that satisfy dropout stability are connected.

» Possible to switch dropout stability with noise stability
(used for proving generalization bounds for neural nets)



Thank you!




