An Introduction to Optimization and Regularization Methods in Deep Learning

Yuan YAO
HKUST
Feifei Li, Stanford cs231n
Example Dataset: **CIFAR10**

- 10 classes
- 50,000 training images
- 10,000 testing images

Example Dataset: **Fashion MNIST**

- 28x28 grayscale images
- 60,000 training and 10,000 test examples
- 10 classes

Jason WU, Peng XU, and Nayeon LEE
The Challenge of Human-Instructing-Computers

The Problem: Semantic Gap

An image is just a big grid of numbers between [0, 255]:

e.g. 800 x 600 x 3 (3 channels RGB)
Complex Invariance

Challenges: Viewpoint variation

- Euclidean transform
- All pixels change when the camera moves!

Challenges: Deformation

- Large scale deformation
Complex Invariance

Challenges: Illumination

Challenges: Background Clutter

Challenges: Occlusion

Challenges: Intraclass variation
Data Driven Learning of the invariants: linear discriminant/classification

Recall from last time: Linear Classifier

\[f(x, W) = Wx + b \]
(Empirical) Loss or Risk Function

Suppose: 3 training examples, 3 classes.
With some \(W \) the scores \(f(x, W) = Wx \) are:

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.2</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>4.9</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>-1.7</td>
<td>2.0</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

A **loss function** tells how good our current classifier is. Given a dataset of examples

\[
\{(x_i, y_i)\}_{i=1}^{N}
\]

Where \(x_i \) is image and \(y_i \) is (integer) label

Loss over the dataset is a sum of loss over examples:

\[
L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)
\]
Hinge Loss

Suppose: 3 training examples, 3 classes. With some \(W \) the scores \(f(x, W) = Wx \) are:

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>frog</th>
<th>car</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>3.2</td>
<td>5.1</td>
<td>-1.7</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>4.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Loss</td>
<td>2.2</td>
<td>2.5</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

Dr. Fei-Fei Li & Justin Johnson & Serena Yeung
Lecture 3 - April 11, 2017

Multiclass SVM loss:

Given an example \((x_i, y_i)\) where \(x_i\) is the image and where \(y_i\) is the (integer) label, and using the shorthand for the scores vector: \(s = f(x_i, W) \)

the SVM loss has the form:

\[
L_i = \sum_{j \neq y_i} \begin{cases}
0, & \text{if } s_{y_i} \geq s_j + 1 \\
(s_j - s_{y_i} + 1), & \text{otherwise}
\end{cases}
\]

\[
= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

“Hinge loss”
Cross Entropy (Negative Log-likelihood) Loss

Softmax Classifier (Multinomial Logistic Regression)

\[L_i = -\log\left(\frac{e^{s_{yi_i}}}{\sum_j e^{s_{y_j}}} \right) \]

<table>
<thead>
<tr>
<th></th>
<th>unnormalized log probabilities</th>
<th>exp</th>
<th>normalize</th>
<th>probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
<td>24.5</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
<td>164.0</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>0.18</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\[L_i = -\log(0.13) = 0.89 \]
Loss + Regularization

\[L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W) \]

Data loss: Model predictions should match training data

Regularization: Model should be “simple”, so it works on test data

Occam’s Razor:
“Among competing hypotheses, the simplest is the best”
William of Ockham, 1285 - 1347
Regularizations

- Explicit regularization
 - L2-regularization
 - L1-regularization (Lasso)
 - Elastic-net (L1+L2)
 - Max-norm regularization

- Implicit regularization
 - Dropout
 - Batch-normalization
 - Earlystopping

\[R(W) = \sum_k \sum_l W_{k,l}^2 \]
\[R(W) = \sum_k \sum_l |W_{k,l}| \]
\[R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}| \]
Hyperparameter (Regularization) Tuning

Data rich:

- 5-fold cross validation

Data poverty: cross-validation

Figure: 5.5. A schematic display of 5-fold CV. A set of n observations is randomly split into five non-overlapping groups. Each of these fifths acts as a validation set (shown in beige), and the remainder as a training set (shown in blue). The test error is estimated by averaging the five resulting MSE estimates.
Recap

- We have some dataset of \((x, y)\)
- We have a **score function**: \(s = f(x; W) = Wx\)
- We have a **loss function**:

 \[
 L_i = -\log\left(\frac{e^{sy_i}}{\sum_j e^{s_j}}\right) \quad \text{Softmax}
 \]

 \[
 L_i = \sum_{j \neq y_i} \max(0, s_j - sy_i + 1) \quad \text{SVM}
 \]

 \[
 L = \frac{1}{N} \sum_{i=1}^{N} L_i + R(W) \quad \text{Full loss}
 \]

How do we find the best \(W\)?

In regression, square loss is often used instead.
Optimization Methods to find minima of the Loss Landscape?
Gradient Descent Method

- Gradient descent is a way to minimize an objective function $J(\theta)$
 - $\theta \in \mathbb{R}^d$: model parameters
 - η: learning rate
 - $\nabla_\theta J(\theta)$: gradient of the objective function with regard to the parameters
- Updates parameters **in opposite direction** of gradient.
- Update equation: $\theta = \theta - \eta \cdot \nabla_\theta J(\theta)$

Figure: Optimization with gradient descent
Gradient Descent Variants

- Batch Gradient Descent
- Stochastic Gradient Descent
- Mini-batch Gradient Descent

- Difference: how much data we use in computing the gradients
Batch Gradient Descent

- Computes gradient with the **entire** dataset
- Update rule:

\[\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta) \]

```python
for i in range(nb_epochs):
    params_grad = evaluate_gradient(loss_function, data, params)
    params = params - learning_rate * params_grad
```

Listing 1: Code for batch gradient descent update
Pros:
- Guaranteed to converge to global minimum for convex objective function and to a stationary/critical point for non-convex ones.
- Exponentially fast (linear) convergence rates in strongly convex landscape
- Sublinear convergence rates in convex landscape

Cons:
- Slow in big data.
- Intractable for big datasets that do not fit in memory.
- No online learning.
Stochastic Gradient Descent

- Computes update for each example \((x^{(i)}, y^{(i)})\), usually uniformly sampled from the training dataset.

- Update equation:

\[
\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x^{(i)}; y^{(i)})
\]

- The expectation of stochastic gradient is the batch gradient.

```python
for i in range(nb_epochs):
    np.random.shuffle(data)
    for example in data:
        params_grad = evaluate_gradient(loss_function, example, params)
        params = params - learning_rate * params_grad
```

Listing 2: Code for stochastic gradient descent update.
Pros:
- Guaranteed to converge to **global** minimum for **convex** losses and to a local optima for **non-convex** ones, may escape **saddle** points polynomially fast.
- $O(1/k)$ convergence rates in convex losses, possibly dimension-free.
- Much faster than batch in big data.
- Online learning algorithms.

Cons:
- High variance in gradients and outcomes.

Figure: SGD fluctuation (Source: Wikipedia)
Batch GD vs. Stochastic GD

- SGD shows same convergence behaviour as batch gradient descent if learning rate is slowly decreased (annealed) over time.

Figure: Batch gradient descent vs. SGD fluctuation (Source: wikidocs.net)
Mini-batch Gradient Descent

- Performs update for every **mini-batch** of random n examples.
- Update equation:

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x^{(i:i+n)}; y^{(i:i+n)})$$

- The expectation of gradient is the same as the batch gradient

```python
for i in range(nb_epochs):
    np.random.shuffle(data)
    for batch in get_batches(data, batch_size=50):
        params_grad = evaluate_gradient(loss_function, batch, params)
        params = params - learning_rate * params_grad
```

Listing 3: Code for mini-batch gradient descent update
Pros
- Reduces variance of updates.
- Can exploit matrix multiplication primitives.

Cons
- Mini-batch size is a hyperparameter. Common sizes are 50-256.
- Typically the algorithm of choice.
- Usually referred to as SGD in deep learning even when mini-batches are used.
<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
<th>Update Speed</th>
<th>Memory Usage</th>
<th>Online Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch gradient descent</td>
<td>Good</td>
<td>Slow</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Stochastic gradient descent</td>
<td>Good (with annealing)</td>
<td>High</td>
<td>Low</td>
<td>Yes</td>
</tr>
<tr>
<td>Mini-batch gradient descent</td>
<td>Good</td>
<td>Medium</td>
<td>Medium</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table: Comparison of trade-offs of gradient descent variants
Challenges

- Choosing a learning rate.
- Defining an annealing (learning rate decay) schedule.
- Escaping saddles and suboptimal minima.
Variants of Gradient Descent Algorithms

- Momentum
- Nesterov accelerated gradient
- Adagrad
- Adadelta
- RMSprop
- Adam
- Adam extensions
Momentum by Polyak 1964, heavy ball

As has been known at least since the advent of conjugate gradient algorithms, improvements to gradient descent can be obtained within a first-order framework by using the history of past gradients. Modern research on such extended first-order methods arguably dates to Polyak [Pol64, Pol87], whose heavy-ball method incorporates a momentum term into the gradient step. This approach allows past gradients to influence the current step, while avoiding the complexities of conjugate gradients and permitting a stronger theoretical analysis. Explicitly, starting from an initial point $x_0, x_1 \in \mathbb{R}^n$, the heavy-ball method updates the iterates according to

$$x_{k+1} = x_k + \alpha (x_k - x_{k-1}) - s \nabla f(x_k),$$

where $\alpha > 0$ is the momentum coefficient. While the heavy-ball method provably attains a faster rate of local convergence than gradient descent near a minimum of f, it does not come with global guarantees. Indeed, [LRP16] demonstrate that even for strongly convex functions the method can fail to converge for some choices of the step size.\(^1\)

The momentum term in the update rule of the method can be written as

$$s \nabla f(x_k)$$

where s is a constant. The parameter α controls the amount of momentum added to the gradient descent step. The heavy-ball method is simple to implement and has been widely used in practice, especially in the field of deep learning.

\(^1\) For strong convexity, the heavy-ball method attains a linear convergence rate of $O(\frac{1}{\sqrt{k}})$.
Momentum in Deep Learning

- SGD has trouble navigating **ravines**.
- Momentum [Qian, 1999] helps SGD **accelerate**.
- Adds a fraction γ of the update vector of the past step ν_{t-1} to current update vector ν_t. Momentum term γ is usually set to 0.9.

$$\nu_t = \gamma \nu_{t-1} + \eta \nabla_{\theta} J(\theta)$$

$$\theta = \theta - \nu_t$$

![Diagram](image)

(a) SGD without momentum
(b) SGD with momentum

Figure: Source: Genevieve B. Orr
- **Reduces updates** for dimensions whose gradients **change directions**.
- **Increases updates** for dimensions whose gradients **point in the same directions**.

Figure: Optimization with momentum (Source: distill.pub)
Nesterov Accelerated Gradient

- **Momentum blindly accelerates** down slopes: First computes gradient, then makes a big jump.
- Nesterov accelerated gradient (NAG) [Nesterov, 1983] first makes a big jump in the direction of the previous accumulated gradient $\theta - \gamma v_{t-1}$. Then measures where it ends up and makes a correction, resulting in the complete update vector.

$$
\begin{align*}
\nu_t &= \gamma \nu_{t-1} + \eta \nabla_\theta J(\theta - \gamma \nu_{t-1}) \\
\theta &= \theta - \nu_t
\end{align*}
$$

Figure: Nesterov update (Source: G. Hinton’s lecture 6c)
Nesterov ODE: convex

- f is convex and has L-Lipschitz gradient, Nesterov Acceleration (NAG-C):

\[y_{k+1} = x_k - s\nabla f(x_k) \]
\[x_{k+1} = y_{k+1} + \frac{k}{k+3}(y_{k+1} - y_k), \]

- [Weijie Su, Stephen Boyd, Emmanuel Candès'2016] Nesterov ODE:

\[\ddot{X}(t) + \frac{3}{t}\dot{X}(t) + \nabla f(X(t)) = 0, \]
Nesterov ODE: strongly convex

(NAG-SC)

descent [Nes83, Nes13]. For a μ-strongly convex objective f with L-Lipschitz gradients, Nesterov’s accelerated gradient method (NAG-SC) involves the following pair of update equations:

\begin{align}
 y_{k+1} &= x_k - s\nabla f(x_k) \\
 x_{k+1} &= y_{k+1} + \frac{1 - \sqrt{\mu s}}{1 + \sqrt{\mu s}} (y_{k+1} - y_k),
\end{align}

(1.3)

between the heavy-ball method and NAG-SC. In particular, these two methods have the same limiting ODE (see, for example, [WRJ16]):

\[\ddot{X}(t) + 2\sqrt{\mu} \dot{X}(t) + \nabla f(X(t)) = 0,\]

(1.9)
High Resolution Nesterov ODE

(a) The high-resolution ODE for the heavy-ball method (1.2):
\[
\ddot{X}(t) + 2\sqrt{\mu} \dot{X}(t) + (1 + \sqrt{\mu s}) \nabla f(X(t)) = 0,
\]
with \(X(0) = x_0\) and \(\dot{X}(0) = -\frac{2\sqrt{s}\nabla f(x_0)}{1+\sqrt{\mu s}}\).

(b) The high-resolution ODE for NAG-SC (1.3):
\[
\ddot{X}(t) + 2\sqrt{\mu} \dot{X}(t) + \sqrt{s} \nabla^2 f(X(t)) \dot{X}(t) + (1 + \sqrt{\mu s}) \nabla f(X(t)) = 0,
\]
with \(X(0) = x_0\) and \(\dot{X}(0) = -\frac{2\sqrt{s}\nabla f(x_0)}{1+\sqrt{\mu s}}\).

(c) The high-resolution ODE for NAG-C (1.5):
\[
\ddot{X}(t) + \frac{3}{t} \dot{X}(t) + \sqrt{s} \nabla^2 f(X(t)) \dot{X}(t) + \left(1 + \frac{3\sqrt{s}}{2t}\right) \nabla f(X(t)) = 0
\]
for \(t \geq 3\sqrt{\bar{s}}/2\), with \(X(3\sqrt{\bar{s}}/2) = x_0\) and \(\dot{X}(3\sqrt{\bar{s}}/2) = -\sqrt{s} \nabla f(x_0)\).
Adagrad

- Previous methods: **Same learning rate** η for all parameters θ.
- Adagrad [Duchi et al., 2011] **adapts** the learning rate to the parameters (**large** updates for **infrequent** parameters, **small** updates for **frequent** parameters).
- SGD update: $\theta_{t+1} = \theta_t - \eta \cdot g_t$
 - $g_t = \nabla_{\theta_t} J(\theta_t)$
- Adagrad divides the learning rate by the **square root of the sum of squares of historic gradients**.
- Adagrad update:

 $$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t$$

 \[(3) \]

 - $G_t \in \mathbb{R}^{d \times d}$: diagonal matrix where each diagonal element i, i is the sum of the squares of the gradients w.r.t. θ_i up to time step t
 - ϵ: smoothing term to avoid division by zero
 - \odot: element-wise multiplication
- **Pros**
 - Well-suited for dealing with sparse data.
 - Significantly improves robustness of SGD.
 - Lesser need to manually tune learning rate.

- **Cons**
 - Accumulates squared gradients in denominator.
 - Causes the learning rate to shrink and become infinitesimally small.
Adadelta

- Adadelta [Zeiler, 2012] restricts the window of accumulated past gradients to a **fixed size**. SGD update:
 \[
 \Delta \theta_t = -\eta \cdot g_t \\
 \theta_{t+1} = \theta_t + \Delta \theta_t
 \]

- Defines **running average** of squared gradients \(E[g^2]_t \) at time \(t \):
 \[
 E[g^2]_t = \gamma E[g^2]_{t-1} + (1 - \gamma) g_t^2
 \]

 \(\gamma \): fraction similarly to momentum term, around 0.9

- **Adagrad update**:
 \[
 \Delta \theta_t = -\frac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t
 \]

- **Preliminary Adadelta update**:
 \[
 \Delta \theta_t = -\frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t
 \]
\[\Delta \theta_t = -\frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t \quad (8) \]

- Denominator is just root mean squared (RMS) error of gradient:
 \[\Delta \theta_t = -\frac{\eta}{RMS[g]_t} g_t \quad (9) \]

- Note: **Hypothetical units do not match.**
- Define running average of squared parameter updates and RMS:
 \[E[\Delta \theta^2]_t = \gamma E[\Delta \theta^2]_{t-1} + (1 - \gamma) \Delta \theta^2_t \]
 \[RMS[\Delta \theta]_t = \sqrt{E[\Delta \theta^2]_t + \epsilon} \quad (10) \]

- Approximate with \(RMS[\Delta \theta]_{t-1} \), replace \(\eta \) for **final Adadelta update**:
 \[\Delta \theta_t = -\frac{RMS[\Delta \theta]_{t-1}}{RMS[g]_t} g_t \quad (11) \]

\[\theta_{t+1} = \theta_t + \Delta \theta_t \]
RMSprop

- Developed independently from Adadelta around the same time by Geoff Hinton.
- Also divides learning rate by a **running average of squared gradients**.
- RMSprop update:

\[
E[g^2]_t = \gamma E[g^2]_{t-1} + (1 - \gamma) g_t^2 \\
\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t
\]

- \(\gamma \): decay parameter; typically set to 0.9
- \(\eta \): learning rate; a good default value is 0.001
Adam

- Adaptive Moment Estimation (Adam) [Kingma and Ba, 2015] also stores **running average of past squared gradients** \(v_t \) like Adadelta and RMSprop.
- Like Momentum, stores **running average of past gradients** \(m_t \).

\[
\begin{align*}
 m_t &= \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
 v_t &= \beta_2 v_{t-1} + (1 - \beta_2) g_t^2
\end{align*}
\]

- \(m_t \): first moment (mean) of gradients
- \(v_t \): second moment (uncentered variance) of gradients
- \(\beta_1, \beta_2 \): decay rates
* m_t and v_t are initialized as 0-vectors. For this reason, they are biased towards 0.

* Compute bias-corrected first and second moment estimates:

\[
\hat{m}_t = \frac{m_t}{1 - \beta_1^t}
\]
\[
\hat{v}_t = \frac{v_t}{1 - \beta_2^t}
\]

(14)

* Adam update rule:

\[
\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t
\]

(15)
Adam Extensions

1. AdaMax [Kingma and Ba, 2015]
 - Adam with ℓ_∞ norm
2. Nadam [Dozat, 2016]
 - Adam with Nesterov accelerated gradient
Update Equations

<table>
<thead>
<tr>
<th>Method</th>
<th>Update equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGD</td>
<td>(g_t = \nabla \theta_t J(\theta_t))</td>
</tr>
<tr>
<td></td>
<td>(\Delta \theta_t = -\eta \cdot g_t)</td>
</tr>
<tr>
<td></td>
<td>(\theta_t = \theta_t + \Delta \theta_t)</td>
</tr>
<tr>
<td>Momentum</td>
<td>(\Delta \theta_t = -\gamma v_{t-1} - \eta g_t)</td>
</tr>
<tr>
<td>NAG</td>
<td>(\Delta \theta_t = -\gamma v_{t-1} - \eta \nabla \theta J(\theta - \gamma v_{t-1}))</td>
</tr>
<tr>
<td>Adagrad</td>
<td>(\Delta \theta_t = -\frac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t)</td>
</tr>
<tr>
<td>Adadelta</td>
<td>(\Delta \theta_t = -\frac{\eta}{\text{RMS}[\Delta \theta]_{t-1}} g_t)</td>
</tr>
<tr>
<td>RMSprop</td>
<td>(\Delta \theta_t = -\frac{\eta}{\sqrt{E[g^2]}_t + \epsilon} g_t)</td>
</tr>
<tr>
<td>Adam</td>
<td>(\Delta \theta_t = -\frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t)</td>
</tr>
</tbody>
</table>
Visualization of algorithms

(a) SGD optimization on loss surface contours

(b) SGD optimization on saddle point

Figure: Source and full animations: Alec Radford
Comparisons

- Adaptive learning rate methods (Adagrad, Adadelta, RMSprop, Adam) are particularly useful for sparse features.
- Adagrad, Adadelta, RMSprop, and Adam work well in similar circumstances.
- [Kingma and Ba, 2015] show that bias-correction helps Adam slightly outperform RMSprop.
On Convergence Analysis

 - Under mild conditions, this class of methods, which we refer to as the "Adam-type", includes the popular algorithms such as the Adam, AMSGrad and AdaGrad, can achieve convergence rate of order $O(\log T/\sqrt{T})$ for nonconvex stochastic optimization.
Parallel and Distributed SGD

- **Hogwild! [Niu et al., 2011]**
 - Parallel SGD updates on CPU
 - Shared memory access without parameter lock
 - Only works for sparse input data

- **Downpour SGD [Dean et al., 2012]**
 - Multiple replicas of model on subsets of training data run in parallel
 - Updates sent to parameter server;
 - Updates fraction of model parameters

- **Delay-tolerant Algorithms for SGD [Mcmahan and Streeter, 2014]**
 - Methods also adapt to update delays

- **TensorFlow [Abadi et al., 2015]**
 - Computation graph is split into a subgraph for every device
 - Communication takes place using Send/Receive node pairs

- **Elastic Averaging SGD [Zhang et al., 2015]**
 - Links parameters elastically to a center variable stored by parameter server
Additional Strategies for SGD

- Shuffling and Curriculum Learning [Bengio et al., 2009]
 - Shuffle training data after every epoch to break biases
 - Order training examples to solve progressively harder problems; infrequently used in practice
- Batch normalization [Ioffe and Szegedy, 2015]
 - Re-normalizes every mini-batch to zero mean, unit variance
 - Must-use for computer vision
- Early stopping
 - “Early stopping (is) beautiful free lunch” (Geoff Hinton)
- Gradient noise [Neelakantan et al., 2015]
 - Add Gaussian noise to gradient
 - Makes model more robust to poor initializations
 - Escape saddles or local optima
Many recent papers use SGD with learning rate annealing.

SGD with tuned learning rate and momentum is competitive with Adam [Zhang et al., 2017b].

Adam converges faster, but oscillates and may underperform SGD on some tasks, e.g. Machine Translation [Wu et al., 2016].

Adam with restarts and SGD-style annealing converges faster and outperforms SGD [Denkowski and Neubig, 2017].

Increasing the batch size may have the same effect as decaying the learning rate [Smith et al., 2017].
Second Order Methods
SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

More critical with SGD+Momentum, less common with Adam.
First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation
Second-Order Optimization

1. Use gradient and Hessian to form quadratic approximation
2. Step to the minima of the approximation
Newton Method

Second-Order Optimization

second-order Taylor expansion:

\[J(\theta) \approx J(\theta_0) + (\theta - \theta_0)^\top \nabla_\theta J(\theta_0) + \frac{1}{2} (\theta - \theta_0)^\top H(\theta - \theta_0) \]

Solving for the critical point we obtain the Newton parameter update:

\[\theta^* = \theta_0 - H^{-1} \nabla_\theta J(\theta_0) \]

Q: What is nice about this update?
Second-Order Optimization

Second-order Taylor expansion:

\[
J(\theta) \approx J(\theta_0) + (\theta - \theta_0)^\top \nabla_\theta J(\theta_0) + \frac{1}{2} (\theta - \theta_0)^\top H(\theta - \theta_0)
\]

Solving for the critical point we obtain the Newton parameter update:

\[
\theta^* = \theta_0 - H^{-1} \nabla_\theta J(\theta_0)
\]

Q: What is nice about this update?

No hyperparameters!
No learning rate!
Second-Order Optimization

second-order Taylor expansion:

\[J(\theta) \approx J(\theta_0) + (\theta - \theta_0)^\top \nabla_\theta J(\theta_0) + \frac{1}{2} (\theta - \theta_0)^\top H(\theta - \theta_0) \]

Solving for the critical point we obtain the Newton parameter update:

\[\theta^* = \theta_0 - H^{-1} \nabla_\theta J(\theta_0) \]

Hessian has \(O(N^2) \) elements
Inverting takes \(O(N^3) \)
\(N = \text{(Tens or Hundreds of) Millions} \)

Q2: Why is this bad for deep learning?
Second-Order Optimization

- Quasi-Newton methods (**BGFS** most popular): *instead of inverting the Hessian (O(n^3)), approximate inverse Hessian with rank 1 updates over time (O(n^2) each).*

- **L-BFGS** (Limited memory BFGS): *Does not form/store the full inverse Hessian.*
L-BFGS

- Usually works very well in full batch, deterministic mode
 i.e. if you have a single, deterministic f(x) then L-BFGS will probably work very nicely

- Does not transfer very well to mini-batch setting. Gives bad results. Adapting L-BFGS to large-scale, stochastic setting is an active area of research.

In practice

- **Adam** is a good default choice in most cases
 - **Adam+SGD** may achieve fast speed and better accuracy
- If you can afford to do full batch updates then try out **L-BFGS** (and don’t forget to disable all sources of noise)
Regularizations
Regularization: Add term to loss

\[L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W) \]

In common use:

L2 regularization \[R(W) = \sum_k \sum_l W_{k,l}^2 \quad \text{(Weight decay)} \]

L1 regularization \[R(W) = \sum_k \sum_l |W_{k,l}| \]

Elastic net (L1 + L2) \[R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}| \]
Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Regularization: Dropout

\(p = 0.5 \) # probability of keeping a unit active. higher = less dropout

```python
def train_step(X):
    """ X contains the data """

    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = np.random.rand(*H1.shape) < p # first dropout mask
    H1 *= U1 # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = np.random.rand(*H2.shape) < p # second dropout mask
    H2 *= U2 # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)
```

Example forward pass with a 3-layer network using dropout
Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

- has an ear
- has a tail
- is furry
- has claws
- mischievous look

score

X

cat

X

X

X
Regularization: Dropout

How can this possibly be a good idea?

Another interpretation:

Dropout is training a large *ensemble* of models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks!
Only $\sim 10^{82}$ atoms in the universe...
Dropout: Test time

Dropout makes our output random!

\[y = f_W(x, z) \]

Want to “average out” the randomness at test-time

\[y = f(x) = E_z[f(x, z)] = \int p(z)f(x, z)dz \]

But this integral seems hard …
Dropout: Test time

Want to approximate the integral

\[y = f(x) = E_z [f(x, z)] = \int p(z) f(x, z) dz \]

Consider a single neuron.

At test time we have:

\[E[a] = w_1 x + w_2 y \]

During training we have:

\[E[a] = \frac{1}{4} (w_1 x + w_2 y) + \frac{1}{4} (w_1 x + 0y) + \frac{1}{4} (0x + 0y) + \frac{1}{4} (0x + w_2 y) \]

At test time, **multiply** by dropout probability

\[= \frac{1}{2} (w_1 x + w_2 y) \]
Dropout: Test time

```python
def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
Dropout Summary

Vanilla Dropout: Not recommended implementation (see notes below)

```python
p = 0.5  # probability of keeping a unit active. higher = less dropout

def train_step(X):
    """ X contains the data ""

    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = np.random.rand(*H1.shape) < p  # first dropout mask
    H1 *= U1  # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = np.random.rand(*H2.shape) < p  # second dropout mask
    H2 *= U2  # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)

def predict(X):
    """ ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1)  # p  # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2)  # p  # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```

drop in forward pass

scale at test time
More common: “Inverted dropout”

```python
p = 0.5  # probability of keeping a unit active. higher = less dropout

def train_step(X):
    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = (np.random.rand(*H1.shape) < p) / p  # first dropout mask. Notice /p!
    H1 *= U1  # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = (np.random.rand(*H2.shape) < p) / p  # second dropout mask. Notice /p!
    H2 *= U2  # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)

def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1)  # no scaling necessary
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    out = np.dot(W3, H2) + b3
```

test time is unchanged!
Regularization: Batch normalization

Step 1: Preprocess the data

Assume X $[N \times D]$ is data matrix, each example in a row.

$X := \text{np.mean}(X, \text{axis} = 0)$

$X := \text{np.std}(X, \text{axis} = 0)$

$\sum_i w_i x_i + b$
Data normalization

Before normalization: classification loss very sensitive to changes in weight matrix; hard to optimize

After normalization: less sensitive to small changes in weights; easier to optimize
e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
 (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet)
 (mean along each channel = 3 numbers)

Not common to normalize variance, to do PCA or whitening
Batch Normalization

“you want unit gaussian activations? just make them so.”

Consider a batch of activations at some layer. To make each dimension unit gaussian, apply:

\[
\hat{x}^{(k)} = \frac{x^{(k)} - \text{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}
\]

This is a vanilla differentiable function...
Batch Normalization

[Batch Normalization, Ioffe and Szegedy, 2015]

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

\[
\hat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}
\]
Batch Normalization

[ioffe and Szegedy, 2015]

\[
\hat{x}(k) = \frac{x(k) - E[x(k)]}{\sqrt{\text{Var}[x(k)]}}
\]

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

Problem: do we necessarily want a unit gaussian input to a tanh layer?
Batch Normalization

Normalize:

\[\hat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}} \]

And then allow the network to squash the range if it wants to:

\[y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)} \]

Note, the network can learn:

\[\gamma^{(k)} = \sqrt{\text{Var}[x^{(k)}]} \]
\[\beta^{(k)} = \mathbb{E}[x^{(k)}] \]

to recover the identity mapping.

[Ioffe and Szegedy, 2015]
Batch Normalization

Input: Values of \(x \) over a mini-batch: \(\mathcal{B} = \{x_1, \ldots, x_m\} \); Parameters to be learned: \(\gamma, \beta \)

Output: \(\{y_i = \text{BN}_{\gamma,\beta}(x_i)\} \)

\[
\begin{align*}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean} \\
\sigma_{\mathcal{B}}^2 & \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2 \quad \text{// mini-batch variance} \\
\hat{x}_i & \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \quad \text{// normalize} \\
y_i & \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \quad \text{// scale and shift}
\end{align*}
\]

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe

[Ioffe and Szegedy, 2015]
Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1,...,m\}$;
Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

\[
\begin{align*}
\mu_B &\leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i & \text{// mini-batch mean} \\
\sigma_B^2 &\leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 & \text{// mini-batch variance} \\
\hat{x}_i &\leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} & \text{// normalize} \\
y_i &\leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) & \text{// scale and shift}
\end{align*}
\]

Note: at test time BatchNorm layer functions differently:

The mean/std are not computed based on the batch. Instead, a single fixed empirical mean of activations during training is used.

(e.g. can be estimated during training with running averages)
Regularization: Data Augmentation

Load image and label

“cat”

CNN

Compute loss

This image by Nikita is licensed under CC BY 2.0
Regularization: Data Augmentation

Load image and label

“cat”

Transform image

Compute loss
Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range $[256, 480]$
2. Resize training image, short side = L
3. Sample random 224×224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales: $\{224, 256, 384, 480, 640\}$
2. For each size, use 10 224×224 crops: 4 corners + center, + flips
Data Augmentation

Color Jitter

Simple: Randomize contrast and brightness

More Complex:
1. Apply PCA to all [R, G, B] pixels in training set
2. Sample a “color offset” along principal component directions
3. Add offset to all pixels of a training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)
Data Augmentation
Get creative for your problem!

- Random mix/combinations of
 - Translation
 - Rotation
 - Stretching
 - Shearing
 - Lens distortions
 - Style transform
 - Adversarials … (go crazy)
Regularization: A common pattern

Training: Add some kind of randomness

\[y = f_W(x, z) \]

Testing: Average out randomness (sometimes approximate)

\[y = f(x) = E_z[f(x, z)] = \int p(z)f(x, z)dz \]
Regularization: A common pattern

Training: Add random noise

Testing: Marginalize over the noise

Examples:
- Dropout
- Batch Normalization
- Data Augmentation
- DropConnect

Wan et al., "Regularization of Neural Networks using DropConnect", ICML 2013
Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:
- Dropout
- Batch Normalization
- Data Augmentation
- DropConnect
- Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014
Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:
- Dropout
- Batch Normalization
- Data Augmentation
- DropConnect
- Fractional Max Pooling
- Stochastic Depth

Huang et al, "Deep Networks with Stochastic Depth", ECCV 2016
Randomization can be more:

- Regularization, that we have seen
- Privacy (Differential Privacy): Dwork et al.
- Robustness: Osher et al., Daniel Hsu et al.
Review: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]
Popular Architectures

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- ILSVRC'15 ResNet (152 layers)
- ILSVRC'14 GoogleNet (22 layers)
- ILSVRC'14 VGG (19 layers)
- ILSVRC'13 (11.7 layers)
- ILSVRC'12 AlexNet (8 layers)
- ILSVRC'11 (25.8 layers)
- ILSVRC'10 (28.2 layers)

Figure copyright Kaiming He, 2016. Reproduced with permission.
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

First CNN-based winner

Figure copyright Kaiming He, 2016. Reproduced with permission.
Case Study: AlexNet

[Krizhevsky et al. 2012]

Architecture:
- CONV1
- MAX POOL1
- NORM1
- CONV2
- MAX POOL2
- NORM2
- CONV3
- CONV4
- CONV5
- Max POOL3
- FC6
- FC7
- FC8

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks

Figure copyright Kaiming He, 2016. Reproduced with permission.

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Details:
- ILSVRC’14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks
Case Study: VGGNet

Simonyan and Zisserman, 2014

Small filters, Deeper networks

<table>
<thead>
<tr>
<th>8 layers (AlexNet)</th>
<th>16 - 19 layers (VGG16Net)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only 3x3 CONV stride 1, pad 1</td>
<td>and 2x2 MAX POOL stride 2</td>
</tr>
<tr>
<td>11.7% top 5 error in ILSVRC’13</td>
<td>(ZFNet)</td>
</tr>
<tr>
<td>-> 7.3% top 5 error in ILSVRC’14</td>
<td></td>
</tr>
</tbody>
</table>

AlexNet VGG16 VGG19
Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (3^2C^2) vs. 7^2C^2 for C channels per layer
<table>
<thead>
<tr>
<th>Layer</th>
<th>Input</th>
<th>Memory</th>
<th>Params</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT: [224x224x3]</td>
<td>memory: 2242243 = 150K</td>
<td>params: 0</td>
<td>(not counting biases)</td>
</tr>
<tr>
<td>CONV3-64: [224x224x64]</td>
<td>memory: 22422464 = 3.2M</td>
<td>params: (3364) * 64 = 1,728</td>
<td></td>
</tr>
<tr>
<td>CONV3-64: [224x224x64]</td>
<td>memory: 22422464 = 3.2M</td>
<td>params: (3364) * 64 = 36,864</td>
<td></td>
</tr>
<tr>
<td>POOL2: [112x112x64]</td>
<td>memory: 11211264 = 800K</td>
<td>params: 0</td>
<td></td>
</tr>
<tr>
<td>CONV3-128: [112x112x128]</td>
<td>memory: 112112128 = 1.6M</td>
<td>params: (33128) * 128 = 73,728</td>
<td></td>
</tr>
<tr>
<td>CONV3-128: [112x112x128]</td>
<td>memory: 112112128 = 1.6M</td>
<td>params: (33128) * 128 = 147,456</td>
<td></td>
</tr>
<tr>
<td>POOL2: [56x56x128]</td>
<td>memory: 5656128 = 400K</td>
<td>params: 0</td>
<td></td>
</tr>
<tr>
<td>CONV3-256: [56x56x256]</td>
<td>memory: 5656256 = 800K</td>
<td>params: (33256) * 256 = 294,912</td>
<td></td>
</tr>
<tr>
<td>CONV3-256: [56x56x256]</td>
<td>memory: 5656256 = 800K</td>
<td>params: (33256) * 256 = 589,824</td>
<td></td>
</tr>
<tr>
<td>CONV3-256: [56x56x256]</td>
<td>memory: 5656256 = 800K</td>
<td>params: (33256) * 256 = 589,824</td>
<td></td>
</tr>
<tr>
<td>POOL2: [28x28x256]</td>
<td>memory: 2828256 = 200K</td>
<td>params: 0</td>
<td></td>
</tr>
<tr>
<td>CONV3-512: [28x28x512]</td>
<td>memory: 2828512 = 400K</td>
<td>params: (33256) * 512 = 1,179,648</td>
<td></td>
</tr>
<tr>
<td>CONV3-512: [28x28x512]</td>
<td>memory: 2828512 = 400K</td>
<td>params: (33512) * 512 = 2,359,296</td>
<td></td>
</tr>
<tr>
<td>CONV3-512: [28x28x512]</td>
<td>memory: 2828512 = 400K</td>
<td>params: (33512) * 512 = 2,359,296</td>
<td></td>
</tr>
<tr>
<td>POOL2: [14x14x512]</td>
<td>memory: 1414512 = 100K</td>
<td>params: 0</td>
<td></td>
</tr>
<tr>
<td>CONV3-512: [14x14x512]</td>
<td>memory: 1414512 = 100K</td>
<td>params: (33512) * 512 = 2,359,296</td>
<td></td>
</tr>
<tr>
<td>CONV3-512: [14x14x512]</td>
<td>memory: 1414512 = 100K</td>
<td>params: (33512) * 512 = 2,359,296</td>
<td></td>
</tr>
<tr>
<td>CONV3-512: [14x14x512]</td>
<td>memory: 1414512 = 100K</td>
<td>params: (33512) * 512 = 2,359,296</td>
<td></td>
</tr>
<tr>
<td>POOL2: [7x7x512]</td>
<td>memory: 77512 = 25K</td>
<td>params: 0</td>
<td></td>
</tr>
<tr>
<td>FC: [1x1x4096]</td>
<td>memory: 4096</td>
<td>params: 77512*4096 = 102,760,448</td>
<td></td>
</tr>
<tr>
<td>FC: [1x1x4096]</td>
<td>memory: 4096</td>
<td>params: 4096*4096 = 16,777,216</td>
<td></td>
</tr>
<tr>
<td>FC: [1x1x1000]</td>
<td>memory: 1000</td>
<td>params: 4096*1000 = 4,096,000</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL memory: 24M * 4 bytes ~ 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks

ILSVRC'10

ILSVRC'11

ILSVRC'12

ILSVRC'13

ILSVRC'14 VGG

ILSVRC'14 GoogleNet

ILSVRC'15 ResNet

152 layers

22 layers

19 layers

11.7

8 layers

8 layers

25.8

shallow

28.2

Figure copyright Kaiming He, 2016. Reproduced with permission.
Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!
 12x less than AlexNet
- ILSVRC’14 classification winner
 (6.7% top 5 error)
Case Study: GoogLeNet

[Szegedy et al., 2014]

“Inception module”: design a good local network topology (network within a network) and then stack these modules on top of each other.
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”
Case Study: ResNet

[He et al., 2015]

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC’15 and COCO’15!
Case Study: ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional neural network?

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!
Case Study: ResNet

[Huang et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to optimize.

The deeper model should be able to perform at least as well as the shallower model.

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.
Case Study: ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

\[H(x) = F(x) + x \]

Use layers to fit residual

\[F(x) = H(x) - x \]

instead of

\[H(x) \] directly

“Plain” layers

Residual block
Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning
- No FC layers at the end (only FC 1000 to output classes)
Case Study: ResNet

[He et al., 2015]

Total depths of 34, 50, 101, or 152 layers for ImageNet
Case Study: ResNet

[He et al., 2015]

For deeper networks (ResNet-50+), use “bottleneck” layer to improve efficiency (similar to GoogLeNet)

For deeper networks (ResNet-50+), use “bottleneck” layer to improve efficiency (similar to GoogLeNet)
Case Study: ResNet

[He et al., 2015]

Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used
Case Study: ResNet

[He et al., 2015]

Experimental Results
- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

ILSVRC 2015 classification winner (3.6% top 5 error) -- better than “human performance”! (Russakovsky 2014)
Improving ResNets...

Deep Networks with Stochastic Depth

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and training time through short networks during training
- Randomly drop a subset of layers during each training pass
- Bypass with identity function
- Use full deep network at test time
Improving ResNets...

Aggregated Residual Transformations for Deep Neural Networks (ResNeXt)

[Xie et al. 2016]

- Also from creators of ResNet
- Increases width of residual block through multiple parallel pathways ("cardinality")
- Parallel pathways similar in spirit to Inception module
ResNet in Noisy Ensembles: Feynman-Kac Equations

- ResNet as a discretization of transport PDE

\[
\begin{aligned}
 \begin{cases}
 x(0) = \hat{x}, \\
 x(t_{k+1}) = x(t_k) + \Delta t \cdot \overline{F}(x(t_k), W(t_k)), \quad k = 0, 1, \ldots, L - 1, \\
 \hat{y} = f(x(1)),
 \end{cases}
\end{aligned}
\]

where \(\overline{F} \equiv \frac{1}{\Delta t} F \), and \(f(x) = \text{softmax}(W_{FC} \cdot x) \).

Continuous limit

characteristic curves of the following transport equation (TE)

\[
\frac{\partial u}{\partial t}(x, t) + \overline{F}(x, W(t)) \cdot \nabla u(x, t) = 0, \quad x \in \mathbb{R}^d.
\]
Feynman-Kac Equation by injective Noise:

\[
\begin{cases}
\frac{\partial u}{\partial t} + F(x, W(t)) \cdot \nabla u + \frac{1}{2} \sigma^2 \Delta u = 0, & x \in \mathbb{R}^d, \ t \in [0, 1), \\
u(x, 1) = f(x).
\end{cases}
\]

Figure: (a) and (b) are solutions of the convection-diffusion equation, Eq. (1), at \(t = 0 \) with different diffusion coefficients \(\sigma \).
Provable Robustness

Theorem (Stability) Let $\overline{F}(x, t)$ be Lipschitz in both x and t, and $f(x)$ is bounded. For the following terminal value problem of convection-diffusion equation ($\sigma \neq 0$)

$$\begin{cases}
\frac{\partial u}{\partial t}(x, t) + \overline{F}(x, W(t)) \cdot \nabla u(x, t) + \frac{1}{2} \sigma^2 \Delta u(x, t) = 0, & x \in \mathbb{R}^d, \ t \in [0, 1), \\
\ u(x, 1) = f(x).
\end{cases}$$

we have

$$|u(x + \delta, 0) - u(x, 0)| \leq C \left(\frac{\|\delta\|_2}{\sigma} \right)^\alpha$$

for some constant $\alpha > 0$ if $\sigma \leq 1$. C is a constant that depends on d, $\|f\|_{\infty}$, and $\|\overline{F}\|_{L_x^\infty,t}$.

O. Ladyzhenskaja et al., Linear and Quasilinear Equations of Parabolic Type
Reference

Reference

Thank you!