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A Brief History of Neural Networks




Perceptron: single-layer

@ Invented by Frank Rosenblatt (1957)
b

Perceptron




Stochastic Approximation

» Robbins-Monro, 1951, Ann. Math. Statist. 22(3):400-407

M(x) = BeA(x;€) = b

where M (x) is monotone, stochastic approximation:

Tep1 = @ — e (A(x4;6) — ) (1)
» Kiefer-Wolfowitz, 1952, Ann. Math. Statist. 23(3):462-466

minEsl(x; €)

LTt+1 = Tt — ﬁtvxg(ft; ft) (2)




The Perceptron Algorithm
for classification

l(w) = — Z v (w,x;), My =1i:y; (x5, w) <0,y; € {—1,1}}.

The Perceptron Algorithm is a Stochastic Gradient Descent method
(Robbins-Monro 1951):

wir1 = wy — e Vib(w)

_ W — MYiXi, U yiw?Xz' < 0,
Wy, otherwise.




Finiteness of Stopping Time and Margin

The perceptron converg—gence theorem was proved by Block (1962) and Novikoff (1962).
The following version is based on that in Cristianini and Shawe-Taylor (2000).

Theorem 1 (Block, Novikoff). Let the training set S ={(x1,t1),...,(X,,, t,,)} be contained in
a sphere of radius R about the origin. Assume the dataset to be linearly separable, and let
Wopt » [Woptll = 1, define the hyperplane separating the samples, having functional margin
y > 0. We initialise the normal vector as wg = 0. The number of updates, k, of the perceptron
algorithms is then bounded by
2
e<(2F)
Y

(10)

Input ball: R = max]||x;||.
1

Margin: 7 = miin yi f(z3)
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Mathematics of Superposition
Representation




Hilbert's 13th Problem

Algebraic equations (under a suitable transformation) of degree up to 6
can be solved by functions of two variables. What about

x'+ a4+ bx®+ex+1=07?
Hilbert's conjecture: x(a, b, ¢) cannot be expressed by a superposition

(sums and compositions) of bivariate functions.

Question: can every continuous (analytic, C*°, etc) function of n

variables be represented as a superposition of continuous (analytic, C*°,
etc) functions of n — 1 variables?

Theorem (D. Hilbert)

There is an analytic function of three variables that cannot be expressed as
a superposition of bivariate ones.

y




Kolmogorov's Superposition Theorem

Theorem (A. Kolmogorov, 1956; V. Arnold, 1957)
Given n € Z*, every fy € C([0,1]") can be reprensented as

2n+1 n

fO(X17X2a"' aXn) — Z &q Z¢pq(xp) )
g=1 p=1

/ where ¢pq € C[0, 1] are increasing functions independent of fy and
gq € C[0, 1] depend on fy.

@ Can choose g to be all the same g4 = g (Lorentz, 1966).

o Can choose ¢pq to be Holder or Lipschitz continuous, but not C!
(Fridman, 1967).

@ Can choose ¢pq = Appg Where A1, --- , A, > 0 and Zp Ap =1
(Sprecher, 1972).

If fis a multivariate continuous function, then f can be written as a superposition of composite
functions of mixtures of continuous functions of single variables:
finite composition of continuous functions of a single variable and the addition.




Kolmogorov's Exact Representation is
not stable or smooth

» [Girosi-Poggio’1989] Representation
Properties of Networks:
Kolmogorov's Theorem Is Irrelevant,
hitps.//www.mitpressjournals.org/d
oi/pdf/10.1162/neco.1989.1.4.465

» | acking smoothnessin h and g
[Vitushkin'1964] fails to guarantee
the generalization ability (stability)
against noise and perturbations

» The representation is not universal in
v the sense that g and h both
depend on the function F to be
represented.

Figure 1: The network representation of an improved version of Kolmogorov’s
theorem, due to Kahane (1975). The figure shows the case of a bivariate function.
The Kahane’s representation formula is f(z1,...,z,) = Zgﬁ{' 1 951 lphg(@p)]
where h, are strictly monotonic functions and [, are strictly positive constants
smaller than 1.



A Simplified illustration by David McAllester
(TTI-Chicago)

A Simpler, Similar Theorem

For (possibly discontinuous) f : [0, 1] — R there exists (pos-
sibly discontinuous) g, h; : R — R.

flz1, ..., zN) =g Zhi(fb‘z’)

Proof: Select h; to spread out the digits of its argument so
that >, h;(x;) contains all the digits of all the x;.




Jniversal Approximate Representation
‘Cybenko'1989, Hornik et al. 1989, Poggio-Girosi’1989, ...]

For continuous f : [0, 1] — R and & > 0 there exists

F(z) = a'c(Wz+ )

= ZO&Z'O‘ (Z Wz’,j X j —1—5@)
2 J

such that for all z in [0, 1]"Y we have |F(z) — f(z)| < €.

Complexity (regularity, smoothness) thereafter becomes the central pursuit in
Approximation Theory.




Locality or Sparsity of Computation

Minsky and Papert, 1969

Perceptron can’t do XOR classification
Perceptron needs infinite global
information to compute connectivity

Expanded Edition
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Perceptrons

Locality or Sparsity is important:
Locality in timee

Locality in space?

Marvin Minsky Seymour Papert

\\ Marvin 1.. Minsky

Seymour A. Papert




Locality or Sparsity is a fundamental
imitation
Definition (Minsky-Papert'1969)

The decision function that f(X) € {1, —1} for X C R” has order k, if it can be
represented by a superposition of functions whose supports are at most k, i.e.
there exists a (possibly of infinite members) family of {¢.(X) : supp(¢a) < k}
such that

f(X) =) ¢a(X)

» Minsky-Papert model admits infinitely many neurons (wide network) in parallel
processing, yet only sparse or local inputs. Note that it is not a Turing model.




Examples of Finite Orders

e f(X) = [X is nonempty] has order 1, as ¢.(X) = [a € X] and
F(X) =22, #a(X).
o f(X) = [X is convex] has order 3, as
f(X)=— Z [midpoint ([a, b]) not in X]

a,beX

e The only topologically invariant predicates of finite order are functions of
the Euler number E(X), which for simplicial complex X C R? is defined as

E(X) := (faces (X)) — #(edges (X)) + #(vertices (X))
= fo— b




Connectivity is of infinite order

» Which one of these two figures is connected?

Figure 5.1

Theorem (Minsky-Papert'1969)

The decision function that f(X) = [X is connected| for X C RP is not of any
finite order, i.e. for any k < oo, there does not exist a (possibly of infinite
members) family of {¢a(X) : supp(¢a) < k} whose supports are at most k,
such that

(03

fF(X) = [Z%(X) 20] (21)




Multilayer Perceptrons (MLP) and
Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)
Learning representations by back-propagating
errors, Nature, 323(%): 533-536

BP algorithms as stochastic gradient descent
algorithms (Robbins—-Monro 1950; Kiefer-

Wolfowitz 1951) with Chain rules of Gradient maps
for multi-layer perceptrons

MLP classifies XOR, yet connectivitye Condition
number in Blum-Shub-Smale real computation
models helps.

NATURE VOL. 323 9 OCTOBER 1986

LETTERSTONATURE £2

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

+ Department of Computer Science, Carnegic-Mellon University,
Pitisburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of like units. The adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustnients, internal ‘*hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from eaclier, simpler methods such as
the perceptron-convergence procedure’.

There have been many attempts to design self-organizing
neural networks, The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specificd by giving the
desired state vector of the output units for each state vector of
the input units, If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

+Ta whom correspondence should be addressed

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
iate internal i

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in paraliel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined

The total input, X;, to unit j is a linear function of the outputs,
y, of the AT THAATE conaaeied to 1 and of The Werghtsw,

on these connections

%=Ly [¢V]

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other weights.

A unit has a real-valued awm:u

function of its total input
=

1
1+e

(&)




BP Algorithm: Network Forward

@ Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]'s

@ Nonlinearities: sigmoid, hyperbolic tangent, (recently)
RelLU.

Algorithm 1 Forward pass

Input: x
Output: =,

g S 1: for{ =110 L do
TEKS 2:  xp= fe(Wiozp—1 + by)
3: end for




BP algorithm = Gradient Descent Method

@ Training examples {z}}™ , and labels {y*}™_,
@ Output of the network {4},
@ Objective square loss, cross-entropy loss, etc.

1 &1 i i
JAWi}, {bi}) = - > iHy — 2% 13 (1)
i—1
@ Gradient descent

0J

W, =W, —n——

l l ”an
0J
b = b — n—
l l n(‘)bl

In practice: use Stochastic Gradient Descent (SGD)




Derivation of BP: Lagrangian Multiplier
LeCun et al. 1988

Given n training examples (1;, y;) = (input,target) and L layers
@ Constrained optimization

min i1 |z (L) — vl

subjectto  z;(¢) = fy [ngz- (£—1) },
i=1,...,n, ¢=1,...,L, z;(0) =1,
@ Lagrangian formulation (Unconstrained)
v%lxi,%ﬁ(w’ z, B)

‘C(vav B) — Zf?:l {|CEZ(L) - y’b”% +

> Bi(0)T (xi(f) — Je [Weiﬂi (£ —1) D }

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf



Background Info

back-propagation — derivation

o 9L

0B

Forward pass

xi(ﬁ):fgh/wxi(ﬁ—lﬂ f=1... L i=1,....n

A;(€)

A\

Qo g—g,Zg — [Vfg]B(ﬁ)
Backward (adjoint) pass
z2(L) =2V L [Ai(L)} (yi — (L))
() = V| L) Wh z(t+1) £=0,...,L—1

\

o W+ W+ 255

Weight update
Wy = We+ A0 z(0)zf (0 —1) 21 /)50




Parallel Distributed Processing
by Rumelhart and McClelland, 1986

Minsky and Papert set out to show which functions can and cannot
be computed by this class of machines. They demonstrated, in particu-
lar, that such perceptrons are unable to calculate such mathematical
functions as parity (whether an odd or even number of points are on in
the retina) or the topological function of connectedness (whether all
points that are on are connected to all other points that are on either
directly or via other points that are also on) without making use of
absurdly large numbers of predicates. The analysis is extremely elegant
and demonstrates the importance of a mathematical approach to analyz-

of multilayer networks that compute parity). Similarly, it is not diffi-
cult to develop networks capable of solving the connectedness or
inside/outside problem. Hinton and Sejnowski have analyzed a version
of such a network (see Chapter 7).

Essentially, then, although Minsky and Papert were exactly correct in
their analysis of the one-layer perceptron, the theorems don’t apply to
systems which are even a little more complex. In particular, it doesn’t
apply to multilayer systems nor to systems that allow feedback loops.




Topology can be learned with finite
InNformation if the manifold is stable
(finife condifion number)

Blum-Shub-Smale models of Real Computation




A Model of Real Computation

» Starting from Blum, Shub, Smale (1989)

® [t admits inputs and operations
(addition, substraction, multiplication,
and (in the case of fields) division) of
real (complex) numbers with infinite
precision

» “The key importance of the condition
number, which measures the closeness
of a problem instance to the manifold
of ill-posed instances, is clearly
developed.” — Richard Karp

Peter Biirgisser
Felipe Cucker

Condition

The Geometry of Numerical Algorithms

&) Springer



The Condition Number of a Manifold

Throughout our discussion, we associate to M a condition number (1/7) where T
is defined as the largest number having the property: The open normal bundle about
M of radius r is embedded in R”Y for every r < t. Its image Tub, is a tubular

neighborhood of M with its canonical projection map

o . Tub;y — M.

Smallest Local Feature Size

G = {x € R" such that 3 distinct p, g € M where d(x, M) = ||x — p|| = |x — ql|},

where d(x, M) = infycpq|lx — y|| is the distance of x to M. The closure of G is
called the medial axis and for any point p € M the local feature size o (p) is the
distance of p to the medial axis. Then it is easy to check that

T = 1Inf o(p).
Ry (p)




-iInd Homology with Finite Samples
:Niyogi, Smale, Weinberger (2008)]

Theorem 3.1 Let M be a compact submanifold of RN with condition number t.
Let x = {x1,...,Xx,} be a set of n points drawn in i.i.d. fashion according to the

uniform probability measure on M. Let 0 <€ < 1/2. Let U = | J, .z Be(x) be a
correspondingly random open subset of RY . Then for all

1
n> p (10g(,32) + log(g)),

the homology of U equals the homology of M with high confidence (probability
>1 — ).

vol(M) and vol(M)

Pr= (cost (@1)vol(BE ) P2 = (cos* (02))vol(BE )

' Here k is the dimension of the manifold M and vol(Bé‘) denotes the k-dimensional
lyogi@Chiccago, volume of the standard k-dimensional ball of radius €. Finally, 01 = arcsin(e /87) and
6> = arcsin(e/167).



Curse of Dimensionality and
“Quantum Algorithms”

To construct a Rips-complex of dimension of n points: O(2") number of
simplices is needed in the worst case => O(poly(n)) in Quantum Algorithms

nature -

COMMUNICATIONS

ARTICLE
Received 17 Sep 2014 | Accepted 9 Nov 2015 | Published 25 Jan 2016 DOI: 10.1038/ncomms10138 [l =Y

Quantum algorithms for topological and geometric
analysis of data

Seth Lloyd', Silvano Garnerone? & Paolo Zanardi3
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FIG. 2. Quantum circuit for quantum TDA. (a) Outline of

the original guantum circuit.  (b) A scatterplot including three
data poants.  (c) Graph representation of the l.simplices state

213" = |110) for 3 < ¢) < 4. The first and second data points are
connected by an edge. (d) Graph representation of 1-simplices state
213 = (1110} + |101))/V2 for 4 < ¢2 < 5. The first data point is

connected to the second and third paints by two edges. (¢) Optimized
circuat with 5 gqubsts. The blocks with different colors represent the
four basic stages.

A Proof of Concept Demonstration by é6-photon Quantum
Computer [Huang et al. 2018, arXiv:1801.06316]
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FIG. 4. Final experimental results. The output is determined by
measuring the eigenvalue register in the Pauli-Z basis. Measured
expectation values (blue bars) and theoretically predicted values
(gray bars) are shown for two different 1-simplices state inputs: (a)
)t = [110), (b) |@)5> = (]110) + |101))/+/2. Error bars repre-
sent one standard deviation, deduced from propagated Poissonian
counting statistics of the raw detection events. (c) The barcode for
0 < e < 5. Since no k-dimensional holes for k& > 1 exist at these
scales, only the O-th Betti barcode is given here. For 0 < ¢ < 3,
there is no connection between each point, so the 0-th Betti num-
ber is equal to the number of points. That is, there are three bars at
0 <e<3. Atscalesof 3 < €1 <4and4 < ez < 5, the 0-th Betti
number are 2 and 1.



Convolutional Neural Networks

Fukushima, LeCun, etc.




Convolutional Neural Networks: shift
Invariances and locality

@ Can be traced to Neocognitron of Kunihiko Fukushima
(1979)

@ Yann LeCun combined convolutional neural networks with
back propagation (1989)

@ Imposes shift invariance and locality on the weights

@ Forward pass remains similar

@ Backpropagation slightly changes — need to sum over the
gradients from all spatial positions

/

Biol. Cybernetics 36, 193-202 (1980)

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima
NHK Broadcasting Science nuta, Sctagaya, Tokyo, Japan
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e Digit classification:

z(u)

v (u) = w(u — 7(u))

| 3

3

5

s

Qs

- Globally invariant to the translation group: small

- Locally invariant to small diffeomorphisms: huge group

hitps.//www.youtube.com/watchev=nUDION-_Hxs

Translation and Deformations ﬂ'f



Max-Margin Classifier (SVM)

C e 2 2
minimizeg, g, ..., 5, 18]]7 == Z Bj
J

subject to y;(Bo + Bixi1 + ... + Bpxip) > 1 for all 4

Separable two classes with Max-Margin Solution

L I 1 b 1 L |
-1.5 -1 -0.5 0 0.5 1 1.5 2

Vliadmir Vapnik, 1994




MNIST Dataset Test Error
LeCun et al. 1998

Linear
[deslant] Linear
Pairwise

K-NN Euclidean

[deslant] K-NN Euclidean
40 PCA + quadratic

1000 RBF + linear
[16x16] Tangent Distance
SVM poly 4

RS-SVM poly 5

[dist] V-SVM poly 9

28x28-300-10
[dist] 28x28-300-10
[deslant] 20x20-300-10

Simp|e SVM performs 28x28-1000-10

[dist] 28x28-1000-10

as well as Mulfilqyer 28x28-300-100-10

[dist] 28x28-300-100-10

Convolutional Neural
o [dist] 28x28-500-150-10

Networks which need

careful tuning (LeNets) s

LeNet-4 / Local
LeNet-4 / K-NN
LeNet-5

Dark era for NN: 1998-2012 [dist] LeNet-5

[dist] Boosted LeNet-4




2000-2010: The Era of SVM, Boosting, ...
as nights of Neural Networks




Decision Trees and Boosting

CLASSIFICATION
AND
REGRESSION
TrEES

HTHR
Stone

Breiman, Friedman, Olshen, Stone, (1983). CART

" The Boosting problem*’ (M. Kearns & L. Valiant):
Can a set of weak learners create a single strong

learnere (=NMNREETRNMEETE ?)
Breiman (1996): Bagging

Freund, Schapire (1997). AdaBoost (“the best off-
the-shelf algorithm™ by Breiman)

Breiman (2001): Random Forests



Around the year of 2012: return of NN
as deep learning’

Speech Recognition: TIMIT Computer Vision: ImageNet

TIMIT Speech Recognition Dataset ImageNet

o5 | Large-Scale Visual Recognition
Challenge
30

225
22.5

Error 20 .q
Top-5 Error 15

17.5
7.5

15 0

2004 2006 2008 2010 2012 2014 2010 2011 2012 2013 2014 2015

Deep Learning »} Deep Convolutional Neural Nets




Depth as function of year

28.2

152 layers ‘

\ 16.4

\ 22 layers H 19 layers ]

' 6.7 7.3
= I
ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

[He et al., 2016]

ILSVRC ImageNet Top 5
errors

@ ImageNet (subset):
o 1.2 million training images
e 100,000 test images
e 1000 classes

@ ImageNet large-scale visual recognition Challenge

30%
25%

20%

S 15%

Human Performance Zone

%
NEC-UIUC XRCE AlexNet ZFNet GoogleNet  ResNet SENet
(2010) (2011) (2012) (2013) (2014) (2015) (2017)

Neural Network Architecture

source: https://www.linkedin.com/pulse/must-read-path-breaking-papers-image-classification-muktabh-mayank



Games

May 11th, 1997

Computer won world champion of chess
(Deep Blue) (Garry Kasparoy)

Deep Blue in 1997

Reaching Human Performance Level In

o 3,000
= =2
© 2,000 -%
5 1,000 - §
0l o
— AlphaGo Zero 40 blocks
-1,000 4 --- AlphaGo Master
~2.000 --- AlphaGo Lee

0 5 10 15 20 25 30 35 40
Days

AlphaGo "ZERQO” D Silver et al. Nature 550, 354—-359 (2017) doi:10.1038/nature24270



Number of Al papers on arXiv, 2010-
2019

Number of Al papers on arXiv, 2010-2019

Source:; arXiv, 2019,
10,000 - Artificial
Intelligence

- Computation and
Language

= CV and Pattern
Recognition
Machine Learning

- Neural and

Evolutionary
Computing

- Robotics

7,500

5,000

2,500

Number of Al papers by sub-category

2012 2014 2016 2018
Fig. 1.6.



Growth of Deep Learning

‘Deep Learning’ is coined by Hinton et al. in their Restricted Boltzman Machine paper, Science 2006,
not yet popular until championing ImageNet competitions.

GoogleTrends Compare
[ SDeep learning : ® Statistical Analysis Data Analysis + Add comparison
earch term Search term Search term
Worldwide ¥ Past 5years ¥ All categories ¥ Web Search +
Interest over time @ -

Average Apr 22,2012 Jan 12,2014 Oct 4, 2015
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Some Cold Water: Tesla Autopilot
Misclassifies Truck as Billboard

" Hgvuyvy ‘ . )

- ca“ll INVESTIGATION FOCUSED ON TESLA AUTOPILOT |obc ALTION

- —
—w- . i1:02 kY

Problem: \Why” How can you trust a
blackbox?




Deep Learning may be fragile in
generalization against noise!

r

“panda”
57.7% confidence

“black hole”
87.7% confidence

+.007 x

" r+
sign(VJ(0,2,y)) esign(VzJ (0, z,y))
“nematode” “gibbon”
8.2% confidence 99.3 % confidence

[Goodfellow et al., 2014]

“‘donut”
99.3% confidence



CNN learns texture features, not
shapes

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

Geirhos et al. ICLR 2019

https://videoken.com/embed/W2HVLBMhCJQ<2tocitem=46
1:16:47




Spurious Correlations rather than
Causation

» | eon Bottou, ICLR 2019

Example: detection of the action “giving a phone call”

[ Not giving a phone call.

~

Giving a phone call ????

J




Overfitting causes privacy leakage

» Model inversion attack leaks privacy

Figure: Recovered (Left), Original (Right)

Fredrikson et al. Proc. CCS, 2016




What's wrong with deep learning?

Ali Rahimi NIPS'17: Machine (deep) Learning has become alchemy.
https://www.youtube.com/watchev=ORHFOnaEzPc

Yann LeCun CVPR'15, invited talk: What's wrong with deep learning?
ne important piece: missing some theory!

http://techtalks.tv/talks/whats-wrong-with-deep-learning/6 1639/

Being alchemy is certainly not a shame, not wanting to work on
advancing to chemistry is a shame! -- by Eric Xing




Some Theoretical Problems

» Approximation Theory and Harmonic Analysis : What functions are represented
well by deep neural networks, without suffering the curse of dimensionality and
better than shallow networks?

» Sparse (local), hierarchical (multiscale), compositional functions avoid the curse
dimensionality

» Group (translation, rotational, scaling, deformation) invariances achieved as depth
Qrows

Statistics learning: How can deep learning generalize well without overfitting the
noise?

» Over-parameterized models change nonseparable classification to separable, and
maximize margin in gradient descent

» Optimization: What is the landscape of the empirical risk and how to optimize it
efficiently?

» Over-parameterized models make empirical risk landscapes simple (multilinear or 2-
layer NN) with degenerate (flat) equilibria

» SGD tends to find flat minima, and gradient-free algorithms like block-coordinate-
descent

= Causal feature learning, interpretability, robustness? ...




How Deep Learning avoids the
Curse of Dimensionality

Locality or Sparsity does the job.




Deep and shallow networks: universality

Theorem Shallow, one-hidden layer networks with a nonlinear ¢(x) which
1s not a polynomaal are universal. Arbitrarily deep networks with a nonlinear
o(x) (including polynomials) are universal.
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Cybenko, Girosi, ....

Both deep and shallow models can approximate continuous functions, but
suffering the curse of dimensionality... [Cybenko (1989), Hornik (1991), Barron
(1993), Mhaskar (1994), Micchelli, Pinkus, Chui-Li |




Curse of Dimensionality

y=f(z1,...,%q)

Curse of dimensionality

Both shallow and deep network can approximate a function of d
variables equally well. The number of parameters in both cases

depends exponentiallyondas O(g™).

Brains o
Minds 1 Mhaskar, Poggio, Liao, 2016
Machines




A Blessing from Physical world?
Multiscale “Ycompositional” sparsity

e Variables z(u) indexed by a low-dimensional u: time/space...

pixels in images, particles in physics, words in text...

e Mutliscale interactions of d variables:
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From d? interactions to O(log® d) multiscale interactions.
(Or even of constant numbers.)

e Multiscale analysis: wavelets on groups of symmetries.
hierarchical architecture.



Hierarchically local compositionality

f(x1 » Xy 7"'3x8) = 83(821(811(x1 9x2)3g12(x37x4 ))gzz(gu(xs ’x6)’g12(‘x7 »Xg )

\/\
/\/\/ A

X1 Xy X3 X4 Xg Xg X7 Xg

Theorem (informal statement)

Suppose that a function of d variables is hierarchically, locally, compositional . Both
shallow and deep network can approximate f equally well. The number of parameters of
the shallow network depends exponentially on d as O(e™) with the dimension
whereas for the deep network dance is O(de™)

Brains

Minds

Machines Mhaskar, Poggio, Liao, 2016

Convolutional Neural Networks (VGG, ResNet etc.) are of this type.



Local filters of small receptive fields (sparsity) are
the key to avoid the curse-of-dimensionality

Stacking local filters -> Fully connected layers ->
large receptive fields explosion of parameters
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Lo 0% T A AlexNet and VGG have

| FC409% | — nception-v ;

C—co% 1] — nceptionve tons of parameters in the

IncepHiony 3° : fully connected layers

RESNEPSO‘ ResNet-101 . /
’ResNet-BA
BRI P T AlexNet: ~62M parameters
it GooglLeNet
\ 5 © sy-un FC6: 256x6x6 -> 4096: 38M params
e . > .
T BN-AlexNet FC7: 4096 -> 4096: 17M params
—— 5510 Aextet FC8: 4096 -> 1000: 4M params
S ~59M params in FC layers!
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Important Special Cases in Statistics

Minimax rates of estimations (Stone 1982): if a regression
function f is Lipschitz on RY o with 0 < a < 1, then the

optimal minimax rate of statistical regression estimators with
2«

N samples is N 2a+d,

Additive models (Stone 1985) f(:cl,...,xd) = fi1(z1) + ...+

fq(zg) with minimax rate N 2a+1
Raskutti-Wainwright-Yu (IEEE TIT, 2011), Yuan-Zhou (A0S,

2016),

Interaction models (Stone 1994): f = Yrcq1 . av,1j=a* f1(%1)

2a
with minimax rate N 2e+d*. Here d* € {1,...,d} and for [ =

{il,...,id*} C {1,...,d} with |I| = d*, xry = (:Cil,...,fcz'd*).




Single index models (Hardle and Stoker 1989): f = g(a-xz) for
some acRYand g: R - R

Projection pursuit (Friedman and Stuetzle 1981): f(z1,...,x4) =
SE | gr(ag-z) with K €N, a; € R? and univariate functions gy,

Hierarchical interaction models (Kohlerl and Krzyzak 2016)

Simple case: f = g(f1(zp), f2(zn,), -, far(z1,))
Generalized hierarchical model: f =g(a1-x,...,a4+« - )

Generalized hierarchical interaction model: f = 37 gp(f1 k- - far k)
with f; (x) generalized hierarchical model




All models are wrong, but some are
useful ... blessing-of-dimensionality¢

Figure 7: George Box: “Essentially, all models are wrong, but some are useful.”




Some Historical Results

» A classical theorem [Sipser, 1986; Hastad, 1987] shows that deep circuits are more
efficient in representing certain Boolean functions than shallow circuits. Hastad proved
that highly-variable functions (in the sense of having high frequencies in their Fourier
spectrum) in particular the parity function cannot even be decently approximated by
small constant depth circuits

» Chui-Li-Mhaskar (1994) shows that multilayer networks can do localized approximation
while single layer ones can not. Older examples exist: consider a function which is a
linear combination of n tensor product Chui-Wang spline wavelets, where each
wavelet is a tensor product cubic spline. It was shown by Chui and Mhaskar that is
impossible to implement such a function using a shallow neural network with a
sigmoidal activation function using O(n) neurons, but a deep network with the
activation function (x,)? do so. In this case, as we mentioned, there is a formal proof of
a gap between deep and shallow networks.

» The main result of [Telgarsky, 2016, Colt] says that there are functions with many
oscillations that cannot be represented by shallow networks with linear complexity but
can be represented with low complexity by deep networks.

= Eldan and Shamir (2016) show an example of a function expressible by a 3-layer
feedforward neural network cannot be approximated by any 2-layer neural network fo
certain accuracy unless the width is exponential in the dimension.

=» Shaham-Cloningen-Coifman (2018): functions on manifolds and order of approximation
by fully connected deep neural networks




What are the group invariant
properties of deep networkse

Translation, deformation, and general groups defined by classification
level sets.

Group invariants starting from Felix Klein's
Erlangen Program, 1872




e Digit classification:

z(u)

v (u) = w(u — 7(u))

| 3

3

5

s

Qs

- Globally invariant to the translation group: small

- Locally invariant to small diffeomorphisms: huge group

hitps.//www.youtube.com/watchev=nUDION-_Hxs

Translation and Deformations ﬂ'f
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Rotation and Scaling Variability

e Rotation and deformations
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Group: SO(2

Group: R x Diff(R)
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o Scaling and deformations




High Dimensional Natural Image Classification

e High-dimensional z = (z(1), ..., z(d)) € R%:

e Classification: estimate a class label f(x)

given n sample values {z;, y; = f(x;)}i<n

Image Classification = 10° Huge variability

Anchor  Joshua Tree Beaver Lotus Water Lily

P - inside classes

Find invariants




Fisher’'s Linear Discriminant (1936)
(Linear Dimensionality Reduction)
Classes T )y 0,

el IE

If level sets (classes) are parallel to a linear space

then variables are eliminated by linear projections: invariants.



Nonlinear Level Set Group Symmetries

Smyel Set Geometry: Symmetries _ =

e Curse of dimensionality = not local but global geometry

Level sets: classes, characterised by their global symmetries.

g..- S .

e A symmetry is an operator g which preserves level sets:

Ve , f(g.xz) = f(x) : global

If g1 and g are symmetries then ¢;.9- is also a symmetry

f(g1.92.2) = f(g2.7) = f(x)

Level set symmetries lead to groups...




Linearize Symmetries :!|:

e A change of variable ®(x) must linearize the orbits {g.x},cc

T D
g1 091-T g 00 0
Q { 0 0
OO O A 0
Q O O o
xT O O O O
132'/
P /
g1-T

e Lipschitz: Vx,g : ||®(x) — ®(g.2)|| < C g



Wavelet Scattering Net
Stephane Mallat et al. 2012

» Architechture:

= Convolutional filters: band-limited complex wavelets

= Nonlinear activation: modulus (Lipschitz)

If u > 0 then p(u) = u

p has no effect after an averaging.

» Pooling: averaging (L1) fox ol

®» Properties:

2J
» A Multiscale Sparse Representation * Sparse representation
=» Norm Preservation (Parseval’s identity): " *@*(b‘(f;ﬁ(u)
A1
_ Sz = |2 %) 5, | % P, | % o(u)
| ISl = Il lla %0 sl % aa] % hr, | % $(u)
= Contraction: BV

1Sz — Sy|| < ||z —y|



Invariants/Stability of Scattering Net

= Translation Invariance (generalized to rotation and scaling):
e The average |z % 1y, | x ¢(t) is invariant to small translations

relatively to the support of ¢.

e Full translation invariance at the limit:

gmwlwa):/|:c*w1<u>|du= I %o, |l

» Stable Small Deformations:

stable to deformations x,(t) = x(t — 7(t))
[z =Sz < C sup [V (t)] |||




Wiatowski-Bolcskel’' 15

» Scattering Net by Mallat et al. so far
» Wavelet Linear filter

= Nonlinear activation by modulus

ot Averoge pOO“ng Filters: Semi-discrete frame W,, :== {xn} U {gx, }r.eA,,

» Generalization by Wiatowski-Bolcskei' 15 afl3 < lf «xali+ 3 1F# gl < BallfI3, ¥ € L2RY

» Fjltfers as frames

Pooling: In continuous-time according to

» | pschitz continuous Nonlinearities F o SY2P (£)(Sno),
. . h > 11is th ling f; d P, : L*(R?) — L*(RY) i
» General Pooling: Max/Average/Nonlinear, efc. g‘f[?pfchgz_cjn;:ugj;’ T LS 2t (RY) = LR s

» As depth grows, the multiplicative pooling factors leads to full invariances.

Assume that the filters, non-linearities, and poolings satisfy
B, <min{1,L%R;?}, VneN.
Let the pooling factors be S,, > 1, n € N. Then,
o) - 2Dl = 0 51 ),
S1...5,

for all f € L?(RY), t € R%, n € N.



Summary

» All these works partially explains the success of CNNs

» Contraction within level set symmetries toward invariance when depth grows
(invariants)

» Separation kept between different levels (discriminant)

» Ofher questions?

» Can one adaptively learn some networks with the same invariant properties as
the scattering net?

» How deep networks generalize well without overfittinge

» What's the landscape of empirical risks and how to efficiently optimize?




Thank you!




