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Last time, a good representation
learning in classification is:

» Contraction within level set symmetries toward invariance when depth
grows (invariants)

» Separation kept between different levels (discriminant)

e High-dimensional z = (z(1), ..., z(d)) € R%:

e Classification: estimate a class label f(x)

given n sample values {z;, y; = f(x;)}i<n

Image Classification d =108 Huge variability
Water Lily

ee eaver
i i - : n inside classes

Find invariants




Prevalence of Neural Collapse during
the terminal phase of deep learning
training

Papyan, Han, and Donoho (2020), PNAS. arXiv:2008.08186




Neural Collapse phenomena, in post-
zero-training-error phase

= (NC1) Variability collapse: As fraining progresses, the within-class variation
of the activations becomes negligible as these activations collapse to their
class-means.

= (NC2) Convergence to Simplex ETF: The vectors of the class-means (after
centering by their global-mean) converge to having equal length, forming
equal-sized angles between any given pair, and being the maximally
pairwise-distanced configuration constrained to the previous two
properties. This configuration is identical to a previously studied
configuration in the mathematical sciences known as Simplex Equiangular
Tight Frame (ETF).

» Visualization: https://purl.stanford.edu/br193mh4244




Definition 1 (Simplex ETF). A standard Simplex ETF is a
collection of points in R specified by the columns of

* C 1 T

M= C—l(I CM)’ 1]
where T € RE*Y is the identity matrix, and 1¢ € R is the
ones vector. In this paper, we allow other poses, as well as
rescaling, so the general Simplex ETF consists of the points
specified by the columns of M = aUM* € RP*®, where
o € Ry is a scale factor, and U € RP*¢ (p > C) is a partial
orthogonal matrix (U 'U = I).



Notations

» Feature layer:

h = he (QB)

» Classification layer:

arg max.,r <’wC/, h> + b/




For a given dataset-network combination, we calculate the
train global-mean pug € RP:

pe = é\ge{hi,c},

and the train class-means u. € RP:

pe = Ave{h; .}, c=1,...,C,

where Ave is the averaging operator.




Given the train class-means, we calculate the train total
covariance X7 € RP*P,

Sr = é\/;e {(hi,c — pa) (hic — “G)T} ’

the between-class covariance, g € RP*P.

2B éAXe{(Nc — MG)(NC — NG)T}a [3]

and the within-class covariance, Xy € RP*P.

Sw = Aijge{(hi,c — pe)(hie — pe) ' ) 4]




Neural Collapse of Features

(NC1) Variability collapse: 3y — 0

(NC2) Convergence to Simplex ETF:

e — pally — e — pell) =0 Ve d

C 1 /
~07~c’ 7 5(:(:’_— \V/, .
ey fer) = G0 = G V&C

pe = (He — pa)/ e — pall2




Neural Collapse of Classifiers

(NC3) Convergence to self-duality:

H Wir HMHF

(NC4): Simplification to NCC:

F

arg max (w., h) + b — argmin [[h — per||2

where fic = (pte — pa)/||pte — pc||2 are the renormalized the
class-means, M = [pe — pg,c = 1,...,C] € RP*Y is the
matrix obtained by stacking the class-means into the columns
of a matrix, and d. . is the Kronecker delta symbol.



/ Datasets:

» MNIST, FashionMNIST, CI- FART0, CIFAR100, SVHN, STL10 and ImageNet
datasets

» MNIST was sub-sampled to N=5000 examples per class, SVHN to N=4600
examples per class, and ImageNet to N=600 examples per class.

» The remaining datasets are already balanced.

» The images were pre-processed, pixel-wise, by subtracting the mean and
dividing by the standard deviation.

= No data augmentation was used.




3 Models: VGG/ResNet/DenseNet

» VGG19, ResNet152, and DenseNet201 for ImageNet;

» VGGI13, ResNet50, and DenseNet250 for STL10;

» VGGI13, ResNet50, and DenseNet250 for CIFAR1T00;

» VGGI13, ResNetl8, and DenseNet40 for CIFARI1O;

» VGGI1, ResNet18, and DenseNet250 for FashionMNIST;
» VGGI1, ResNet18, and DenseNet40 for MNIST and SVHN.




Results
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Fig. 2. Train class-means become equinorm: The formatting and technical details are as described in Section 3. In each array cell, the vertical axis shows the coefficient of
variation of the centered class-mean norms as well as the network classifiers norms. In particular, the blue line shows Std. (||pte — pcll2)/Avg,. (||pe — pall2) where { .}
are the class-means of the last-layer activations of the training data and ¢ is the corresponding train global-mean; the orange line shows Std.. (||w.||2)/Avg. (||lw.||2)
where w.. is the last-layer classifier of the c-th class. As training progresses, the coefficients of variation of both class-means and classifiers decreases.
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Fig. 3. Classifiers and train class-means approach equiangularity: The formatting and technical details are as described in Section 3. In each array cell, the vertical
axis shows the standard deviation of the cosines between pairs of centered class-means and classifiers across all distinct pairs of classes c and ¢’. Mathematically, denote
cosp(c,c’) = (pe — pa, ko — pa) /(lne — pell2llme — pellz and cosw (e, ¢) = (we, wer) /(lwell2]lw, ||2) where {w.}
in Figure 2. We measure Std,, ./ .(cosy(c, c’)) (blue) and Std.. /2. (cosw(c, c’)) (orange). As training progresses, the standard deviations of the cosines approach zero

indicating equiangularity.

c=1"’

{Mc}cczl, and o are as
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Fig. 4. Classifiers and train class-means approach maximal-angle equiangularity: The formatting and technical details are as described in Section 3. We plot in the
vertical axis of each cell the quantities Avg,, ./ | cos, (¢, ¢’) +1/(C — 1)| (blue) and Avg,, ./ | cosw (¢, ¢’) 4+ 1/(C — 1)| (orange), where cos, (¢, ¢') and cosay (¢, )
are as in Figure 3. As training progresses, the convergence of these values to zero implies that all cosines converge to —1/(C — 1). This corresponds to the maximum
separation possible for globally centered, equiangular vectors.
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Fig. 5. Classifier converges to train class-means: The formatting and technical details are as described in Section 3. In the vertical axis of each cell, we measure the

distance between the classifiers and the centered class-means, both rescaled to unit-norm. Mathematically, denote M = M /|| M| r where M =

[“C_"LG:CZ

1,...,C] € RPXY is the matrix whose columns consist of the centered train class-means; denote W = W /||W || where W € RE*P is the last-layer classifier of the

network. We plot the quantity ||V T
matrices become proportional to each other (self-duality).

= 1\7I|| 2. on the vertical axis. This value decreases as a function of training, indicating the network classifier and the centered-means
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Fig. 6. Training within-class variation collapses: The formatting and technical details are as described in Section 3. In each array cell, the vertical axis (log-scaled) shows
the magnitude of the between-class covariance compared to the within-class covariance of the train activations . Mathematically, this is represented by Tr{ Sw 2;; }/ C

where Tr{-} is the trace operator, Xy is the within-class covariance of the last-layer activations of the training data, X g is the corresponding between-class covariance, C' is
the total number of classes, and [-]T is Moore-Penrose pseudoinverse. This value decreases as a function of training — indicating collapse of within-class variation.
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Fig. 7. Classifier behavior approaches that of Nearest Class-Center: The formatting and technical details are as described in Section 3. In each array cell, we plot the
proportion of examples (vertical axis) in the testing set where network classifier disagrees with the result that would have been obtained by choosing arg min.. ||h — pc||2
where h is a last-layer test activation, and {p,c}f:l are the class-means of the last-layer train activations. As training progresses, the disagreement tends to zero, showing the
classifier’s behavioral simplification to the nearest train class-mean decision rule.



Propositions

» | DA:

» NCI +

» NC2 +

= |inear Discriminant Analysis (LDA)
= Max-Margin classifier:

» NCI +

» NC2 +

» Max-Margin Classifier

——>

NC3 + NC4
(nearest neighbor
classifier)

NC3 + NC4
(nearest neighbor
classifier)



Summary

» Contraction within class
» Separation between class

» After the zero-training-error (terminal phase of training),

» Feature representation approaches the regular simplex of C vertices

» Classifier converges to the nearest neighbor rule (LDA)




Translation and Deformation
Invariances in CNN

Stephane Mallat et al. Wavelet Scattering Networks
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ENS

Deep Convolutional Networks !n‘:

Uk?J

pL J classification

e [, is a linear combination of convolutions and subsampling:

xj(u, kj) = P( > mia( k) hkj,k(u))

sum across channels
e p is contractive: [p(u) — p(u')] < |u — /|

p(u) = max(u,0) or p(u) = |ul




%: E . Many Questions !n'i
(u, k)

ENS
J

pL J classification

 Why convolutions ? Translation covariance.

 Why no overfitting ? Contractions, dimension reduction

e Why hierarchical cascade ?
e Why introducing non-linearities ?
 How and what to linearise ?

» What are the roles of the multiple channels in each layer ?




SFE-E . Linear Dimension Reduction n'f

Classes T th
Level sets of f(x) " J {13
O =z f(z)=1) H{
(z) %®e g /

If level sets (classes) are parallel to a linear space

then variables are eliminated by linear projections: nvariants.

A

O(z) = Xy (i1 — fo)

fue = ﬁ > @ Swo=) > (@i — ) (@i — i)

1€Cl k 1€Ch




s@iﬁﬂise for Dimensionality Reduction-¢

Classes +"
Level sets of f(x) { 0
O ={z : flo)=1} I
“®(z)

o If level sets {); are not parallel to a linear space

- Linearise them with a change of variable ®(x)

- Then reduce dimension with linear projections

e Difficult because {); are high-dimensional, irregular,
known on few samples.




S@;Jigyel Set Geometry: Symmetries _. E-i

e Curse of dimensionality = not local but global geometry

Level sets: classes, characterised by their global symmetries.

e A symmetry is an operator g which preserves level sets:

Ve , f(g.x) = f(x) : global

If g1 and g9 are symmetries then g;.g5 is also a symmetry

f(g1.92.) = f(g2.2) = f(x)




i

S'{@f ... Groups of symmetries -

e (G = { all symmetries } is a group: unknown

V(g,d) €G* =g4 €CG
Inverse: VgeG , gteq

Associative: (g.g’).g" = 9-(9/-9”)

If commutative ¢.¢" = ¢’.g : Abelian group.

e Group of dimension n if it has n generators:

g=91" g5 ...g-"

e Lie group: infinitely small generators (Lie Algebra)




e Digit classification:

2(w) ' (u)
3|/38 | |5 s

- Globally invariant to the translation group

- Locally invariant to small diffeomorphisms

Linearize small
diffeomorphisms:
= Lipschitz regular

Weon <~ A4 T o~ r
- S, = e
o3 3 4 1 -— 20

Johnson

‘A'f_. . ONTE .  asRR
Video of Philipp Scott
https://www.youtube.com/watchev=nUDIoN- Hxs

Translation and Deformations =




Smanslations and Deformations i:f

e Invariance to translations:

gr(u)=z(u—c) = P(g.x)=(x).

e Small diffeomorphisms: g.x(u) = z(u — 7(u))
Metric: ||g[| = [|[VT||cc maximum scaling

Linearisation by Lipschitz continuity

|®(z) = @(g.2)| < C|VTleo -

e Discriminative change of variable:

|®(z) — ()| = C7" |f(z) — f(2)]



ENS

@;ﬂ . Fourier Deformation Instability !n‘:

e Fourier transform #(w) = [x(t) e ™! dt
r.(t) =2t —c) = Z(w)=e "3 (w)
The modulus is invariant to translations:

O(z) = 2| = ||

e Instabilites to small deformations z.(t) = z(t — 7(¢)) :

| |2, (w)| — |z(w)|| is big at high frequencies

.

= 2] = [zl > V7]l 2]




-

i%‘z.u_ Wavelet Transform

e Complex wavelet: 1(t) = 1 (t) + i °(t)
e Dilated: ) (t) =277 (277t) with A=277 .

p(w)? [OA@)? |ghar (w)?

e Wavelet transform: x x ) (t) = /;C(u) Ya(t —u) du

W= ( i >

Unitary: [|[Wz|]* = ||=]]* .




o Complex wavelet: () = %(t) +i°(t) , t = (t1,t2)
rotated and dilated: vy (t) =277 ¢(277rt) with A= (27,7)

real parts imaginary parts

e Wavelet transform: Wgx = ( % ¢(t)

Unitary: ||VV5’7||2 = Hf’fuz :




Why Waveletse

» Complex band limited Wavelets are uniformly stable to deformations

if ¥ -(t) = Yr(t —7(t)) then

|[YA —Ua .|| < C Slip V()] .

» Wavelets are sparse representations of functions
» Wavelets separate multiscale information

» Wavelets can be locally franslation invariant




Sparsity of Wavelet Transtorms

oxin, (0] =| [ 2wt - u)df

m‘-""‘ Singular Functions -~

MMVM s
b JU




Singularity is preserved in multiscale transform

m_ Singular Functions -

|z %y, (B)] = ‘/x(u)gb\l (t —u) du|
x(t)

(W //‘
] %

vy

1
U
ok, (1) o JL
/xQ
S S

Second wavelet transform modulus

[ % o, | % o (1) )
[ % o |+, (D))

Wi |2 % or, = ( ‘




%_Wavelet Translation Invariance !:ﬂ

zx 9, () = 2 x93, () +izx U} (1)

I
[
a
L ]
'y 1
' o
[ e W o]
. W
' .
(- A
L e
(- .
J
ot
-




m;h_Wavelet Translation Invariance ﬂj

5 s, ()] = /% 03, (D2 + |2 v}, ()2 pooling

e The modulus |z x ), | is a regular envelop




Mavelet Translation Invariance ﬂj

LS}
Ay

e The modulus |z % 1y, | is a regular envelop

e The average |z x 1y, | x ¢(t) is invariant to small translations

relatively to the support of ¢.




e The modulus |z x 1y, | is a regular envelop

e The average |z x 1y, | * ¢(t) is invariant to small translations

relatively to the support of ¢.

e Full translation invariance at the limit:

lim |2 5 s, | * 61 =/|x*w1<u>|du= %, 1

p—1
but few invariants.




rE%;,_,_Recovering Lost Information !n‘:

|$*¢)\1|

M\ o ‘fgb

e The high frequencies of |x x vy, | are in wavelet coefficients:

B |z * 1y, | * D(t)
Wz 1y, | = ( \g;*wj\*wg(t) )t,AQ

e Translation invariance by time averaging the amplitude:

\V/Ala)\Qa ||$*¢>\1|*¢>\2’*¢(t)




If u > 0 then p(u) = u

p has no effect after an averaging.

e Sparse representation Scale




mﬂ_Contraction

sz( zx O(¢) ) is Tinear and ||z = [z
t. A\

x*¢A(t)
plu) = |u
B x * ¢(t) : :
Wz = ( P )w\ is non-linear

- it is contractive |[|W]x — |[Wly| < ||z — vy

because for (a,b) € C? ||a| — [b|| < |a — b

- it preserves the norm |||W|z| = ||z||




Wavelet Scattering Network

m" Cascade of Contractions ::j

Ttrop o L

|z x Yy, | * @
[Ws|

w I

e Cascade of contractive operator
[[Wh|z — IWk|ﬂf’H < lz - fL”H with [|[Wi|z| = [[=]| .




S’roblh’ry of Wavelet Scattering Transform
_ Scattering Properties ﬁﬂ-:

T xp (u) \
[z * P, | * P(u)
|2 %) Ay [ % Px, | % p(u)
|z %0 x| * Y, | % Uns| * d(u)

Sx

/ u,)\l,)\g,)\3,...

Theorem: For appropriate wavelets, a scattering is

contractive ||Sz — Sy| < ||z — y||

preserves norms ||Sxz| = ||z||
stable to deformations x.(t) = z(t — 7(t))
2= Sz | < ¢ sup [Vr(e) |||

= linear discriminative classification from ®x = Sz




Summary: Wavelet Scattering Net

x *¢ (u)
|z % Yx, [ * P(u)

» Architechture: Sz = |7 %) x, | % P, | * P(u)
HERSUBWE R WE W E Iy
» Convolutional filters: band-limited wavelets

» Nonlinear activation: modulus (Lipschitz)
= Pooling: LT norm as averaging I%1!--- Cascade of Contractions o4

®» Properfies:

» A Multiscale Sparse Representation

» Norm Preservation (Parseval’s identity):

1Sz]| = [l]

» Contraction:

e Cascade of contractive operators
Wl — [Wi|2'|| < llz = 2| with [[[Wi|z| = [z .

1Sz — Sy|| < ||z —y|

U,>\1,>\2,>\3,...



What is in between?

No training until the
classifier

No parameters in the
convolutional layers

Most “control” of
regularity and robustness

Strong performance and
explainable features

Fully trained by large
volume of data

Lots of parameters
(largest model capacity)

Least “control” of
regularity and robustness

Best performance but not
explainable



Decomposed Convolutional Filters
(DCF)

Xiuyuan Cheng et al.
hitps://arxiv.org/abs/1802.04145




Decomposition of Convolutional Filters

The mapping in a convolutional layer

rO(u,\) = o (zx JWEL (@)z0=D (o, N)do' + b“)(/\))




Decomposition of Convolutional Filters

Introducing bases (0

K
Wy a(w) =D (axa)kve(w).

=1

IIIE

OLLIR %2 DR IO

IIIEEEEN




Decomposition of Convolutional Filters

* Filters viewed in tensors

. M
@ M,
= X
L K
U X ax, )
(L, L, M', M] L,L,1,K] 1,1, KM', M]

* Psi prefixed, a trained from data




Reduction in the Number of Parameters

* Number of parameters
* Regular conv layer: LxLxM xM
« DCF layer: Kx M xM

* Forward-pass computation

* Regular conv layer: M'W?. M(1+2L?)
« DCF layer: M'W?.2K(L* + M)

K

A factor of 7 .




Applications and extensions:

» |nvertibility/completeness of representation [Waldspurger et al. '12]
» [Extension to signals on graphs [Chen et al. "14] [Cheng et al. "16]

» With general family of filters [Bolcskei et al. '15] [Czaja et al. "15]




Wiatowski-Bolcskel’' 15

» Scattering Net by Mallat et al. so far
» Wavelet Linear filter
= Nonlinear activation by modulus
= Average pooling

» Generalization by Wiatowski-Bolcskei’ 15

» Filters as frames
» | pschitz continuous Nonlinearities

» General Pooling: Max/Average/Nonlinear, etc.




Generalization of Wiatowski-Bolcskel' 15

Scattering networks ([Mallat, 2012], [Wiatowski and HB, 2015])

1f* 9,0+ 9,0

N Y€

|{*9A§k>| ) |f*gA§z»\>|
// k/ / \\
2 o f feature map 2
w”
TR X1

feature vector ®(f)

General scattering networks guarantee [Wiatowski & HB, 2015]
- (vertical) translation invariance
- small deformation sensitivity

essentially irrespective of filters, non-linearities, and poolings!




Wavelet basis -> filter frame

Building blocks

Basic operations in the n-th network layer

/

f

N

9\®) - non-lin. H pool.
9\t non-lin. H pool.

Filters: Semi-discrete frame ¥,, := {x»} U{gxr, }r,eA,

Al 117 < 11 * xnllz +

e.g.. Structured filters

> If*gall® < Ballfll3, Vf € L*(RY)

NZEESNIN



Frames: random or learned filters

Building blocks

Basic operations in the n-th network layer

/ 9% I non-lin. H pool.
f

\ 9\ 4 non-lin. H pool.

Filters: Semi-discrete frame ¥, := {x,,} U {gx, }r. e,

AllFIB < *xnl3+ Y I+ 90 l* < BallfI3, VS € LAR?
An€An

e.g.: Unstructured filters

< b R

Building blocks

Basic operations in the n-th network layer

/ 9\%) I non-lin. H pool.
f

\ 950 non-lin. H pool.

Filters: Semi-discrete frame U, := {xn} U{gxr, }r e,

AIFI3 < IF *xal3+ D I *ga.l> < BallflI3,  Vf € L*(RY)
ATLEATL

e.g.: Learned filters

= = £
.



Nonlinear activations

Building blocks

Basic operations in the n-th network layer

/

f

AN

9\ - non-lin. H pool.

9\ 1 non-lin. H pool.

Non-linearities: Point-wise and Lipschitz-continuous

| Mo () = Mu()ll2 < Lollf = hll2, Y f,h e LA(RY)

= Satisfied by virtually all non-linearities used
in the deep learning literature!

1.

ReLU: L, = 1; modulus: L,, = 1; logistic sigmoid: L,, = v e



POOliﬂg Building blocks

Basic operations in the n-th network layer

/ 9\®) - non-lin. H pool.

f

\ 95 I non-lin. H pool.

Pooling: In continuous-time according to
e Sg/an(f)(Sn-),
where S,, > 1 is the pooling factor and P, : L?(R%) — L?(RY) is
R,,-Lipschitz-continuous
= Emulates most poolings used in the deep learning literature!
e.g.: Pooling by sub-sampling P,,(f) = f with R, =1

e.g.. Pooling by averaging P, (f) = f * ¢, with R,, = ||¢n]|,



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

B, <min{l,L %2R %}, VnecN.

Let the pooling factors be S,, > 1, n € N. Then,

2]
O™ (T, f) — P" = —
") - 0" (Plll = 05 )
for all f € L2(Rd), tcR? neN,

The condition

B, <min{l,L *R.*}, VneéeN,

is easily satisfied by normalizing the filters {gy_}x, en, -




Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy
B, <min{l,L*R;*}, VnecN.
Let the pooling factors be S,, > 1, n € N. Then,
l"(f) - (Dl = 0 5 ),
S1...8,
for all f € L?>(R%), t € R, n € N.

= Features become more invariant with increasing network depth!

3

3



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy
B, <min{l, L °R;*}, V¥ne€N.

Let the pooling factors be S,, > 1, n € N. Then,
87T f) - (Il = O =),
S1....5,
for all f € L?>(RY), t € R%, n € N.

Full translation invariance: If lim S7-S55-...-.S,, = oo, then
n—oo

lim [[|®™(T:f) — @"(f)[| =0

n—oo



Philosophy behind invariance results

Mallat's “horizontal” translation invariance [Mallat, 2012]:

Jim [l|@w(Tef) — 2w (NIl =0, Ve L*RY), vt eR

- features become invariant in every network layer, but needs
J — o0

- applies to wavelet transform and modulus non-linearity without
pooling

“Vertical” translation invariance:

lim l|e™(T2f) — " ()l =0, Vfe L*R?), ¥t € R

- features become more invariant with increasing network depth

- applies to general filters, general non-linearities, and general
poolings



Group Invariant and Equivariant
Networks

Cohen, Welling, https.//arxiv.org/abs/1602.07576
Sannai, Takai, Cordonnier, https://arxiv.org/abs/1903.01939v2




Definition 2.1. Let G be a group and X and Y two sets. We assume that GG acts on X (resp. Y) by
g-x(resp. gxy)forge Gandx € X (resp. y € Y). Wesay thatamap f: X — Y is

o G-invariantif f(g-z) = f(x) forany g € G and any = € X,
o G-equivariantif f(g-x) = gx* f(x) forany g € G and any x € X.




Group Convolution Neural Network
[Cohen, Welling, https://arxiv.org/abs/1602.07576]

Kl

f (@) =D > fuly)vi(z —y)

fl(g) = > frulh)ve(g™ h).




Permutation Invariant Functions

When G = S, and the actions are induced by permutation, we call G-invariant (resp. GG-equivariant)
functions as permutation invariant (resp. permutation equivariant) functions.

Theorem 3.1 ([28] Kolmogorov-Arnold’s representation theorem for permutation actions). Let K C
R"™ be a compact set. Then, any continuous S,,-invariant function f: K — R can be represented

fl@e,an) = p (Zcb(wi)) (1)

for some continuous function p: R"*t — R. Here, ¢: R — R Lz s (1, 2,22,...,2™) ",

® =
o
o=




Permutation Equivariant Functions

Proposition 4.1. A map F': R" — R" is S,,-equivariant if and only if there is a Stab(1)-invariant
function f: R™ — R satisfying ' = (f,fo(12),...,fo(1n))". Here, (1i) € S, is the
transposition between 1 and 1.

Corollary 4.1 (Representation of Stab(1)-invariant function). Let K C R"™ be a compact set, let
: K — R be a continuous and Stab(1)-invariant function. Then, f(x) can be represented as

fl®) = f(x1,...,20) = p (931,2@5(%)) :

for some continuous function p: R*"*' — R. Here, ¢: R — R" is similar as in Theorem 3.1.

Diaeram 3: A neural network approximatine the Stab(1)-invariant function



Diagram 2: A neural network approximating .S,,-equivariant map F'




Thank you!




