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Last time, a good representation 
learning in classification is:
´ Contraction within level set symmetries toward invariance when depth 

grows (invariants)

´ Separation kept between different levels (discriminant)

given n sample values {xi , yi = f(xi)}in

• High-dimensional x = (x(1), ..., x(d)) 2 Rd
:

• Classification: estimate a class label f(x)

  High Dimensional Learning

Image Classification d = 106

Anchor Joshua Tree Beaver Lotus Water Lily

Huge variability

inside classes

Find invariants



Prevalence of Neural Collapse during 
the terminal phase of deep learning 
training 
Papyan, Han, and Donoho (2020), PNAS. arXiv:2008.08186



Neural Collapse phenomena, in post-
zero-training-error phase
´ (NC1) Variability collapse: As training progresses, the within-class variation

of the activations becomes negligible as these activations collapse to their
class-means.

´ (NC2) Convergence to Simplex ETF: The vectors of the class-means (after
centering by their global-mean) converge to having equal length, forming
equal-sized angles between any given pair, and being the maximally
pairwise-distanced configuration constrained to the previous two
properties. This configuration is identical to a previously studied
configuration in the mathematical sciences known as Simplex Equiangular
Tight Frame (ETF).

´ Visualization: https://purl.stanford.edu/br193mh4244



converge to having equal length, forming equal-sized an-
gles between any given pair, and being the maximally
pairwise-distanced configuration constrained to the pre-
vious two properties. This configuration is identical to
a previously studied configuration in the mathematical
sciences known as Simplex Equiangular Tight Frame
(ETF) (6). See Definition 1.

(NC3) Convergence to self-duality: The class-means
and linear classifiers – although mathematically quite
di�erent objects, living in dual vector spaces – converge
to each other, up to rescaling. Combined with (NC2), this
implies a complete symmetry in the network classifiers’
decisions: each iso-classifier-decision region is isometric
to any other such region by rigid Euclidean motion;
moreover the class-means are each centrally located
within their own specific regions, so there is no tendency
towards higher confusion between any two classes than
any other two.

(NC4) Simplification to Nearest Class-Center (NCC):
For a given deepnet activation, the network classifier
converges to choosing whichever class has the nearest
train class-mean (in standard Euclidean distance).

We give a visualization of the phenomena (NC1)-(NC3) in
Figure 1�, and define Simplex ETFs (NC2) more formally as
follows:
Definition 1 (Simplex ETF). A standard Simplex ETF is a
collection of points in RC specified by the columns of
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where I œ RC◊C is the identity matrix, and C œ RC is the
ones vector. In this paper, we allow other poses, as well as
rescaling, so the general Simplex ETF consists of the points
specified by the columns of M = –UMı

œ Rp◊C , where
– œ R+ is a scale factor, and U œ Rp◊C (p Ø C) is a partial
orthogonal matrix (U€U = I).

Properties (NC1)-(NC4) show that a highly symmetric and
rigid mathematical structure with clear interpretability arises
spontaneously during deep learning feature engineering, iden-
tically across many di�erent datasets and model architectures.

(NC2) implies that the di�erent feature means are ‘equally
spaced’ around the sphere in their constructed feature space;
(NC3) says the same for the linear classifiers in their own dual
space; and moreover, that the linear classifiers are ‘the same
as’ the class means, up to possible rescaling. These mathe-
matical symmetries and rigidities vastly simplify the behavior
and analysis of trained classifiers, as we show in Section 5
below, which contrasts the kind of qualitative understanding
previously available from theory, against the precise and highly
constrained predictions possible with (NC4).

(NC1)-(NC4) o�er theoretically-established performance
benefits: stability against random noise and against adversarial
noise. And indeed, this theory bears fruit. We show that

�Figure 1 is, in fact, generated using real measurements, collected while training the VGG13 deep-
net on CIFAR10: For three randomly selected classes, we extract the linear classifiers, class-
means, and a subsample of twenty last-layer features at epochs 2, 16, 65, and 350. These entities
are then rotated, rescaled, and represented in three-dimensions by leveraging the singular-value
decomposition of the class-means. We omit further details as Figure 1 serves only to illustrate
Neural Collapse on an abstract level.
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Fig. 1. Visualization of Neural Collapse: The figures depict, in three dimensions,
Neural Collapse as training proceeds, from top to bottom. Green spheres represent
the vertices of the standard Simplex ETF (Definition 1), red ball-and-sticks represent
linear classifiers, blue ball-and-sticks represent class-means, and small blue spheres
represent last-layer features. For all objects, we distinguish different classes via
the shade of the color. As training proceeds, last-layer features collapse onto their
class-means (NC1), class-means converge to the vertices of the Simplex ETF (NC2),
the linear classifiers approach their corresponding class-means (NC3). An animation
can be found here.
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Notations

´ Feature layer:

´ Classification layer:

during TPT, while Neural Collapse is progressing, the trained
models are improving in generalizability and in adversarial
robustness.

In Section 7 below we discuss the broader significance of
(NC1)-(NC4) and their relation to recent advances across
several rapidly developing ‘research fronts.’

To support our conclusions, we conduct empirical studies
that range over seven canonical classification datasets (7–9), in-
cluding ImageNet (10), and three prototypical, contest-winning
architectures (11–13). These datasets and networks were cho-
sen for their prevalence in the literature as benchmarks (14–16),
rea�rmed by their easy availability as part of the popular
deep learning framework PyTorch (17). As explained below,
these observations have important implications for our under-
standing of numerous theoretical and empirical observations
in deep learning.

2. Setting and methodology

All subsequent experiments are built upon the general setting
and methodology described below.

A. Image classification. In the image classification problem,
we are given a training dataset of d-dimensional images, the
goal is to train a predictor to identify the class – out of C
total classes – to which any input image x œ Rd belongs.

B. Deep learning for classification. In this work, we consider
the predictor to be a deep neural network, which typically
consists of numerous layers followed by a linear classifier. We
view the layers before the classifier as computing a function,
xæ h(x), where h : Rd

æ Rp outputs a p-dimensional feature
vector. We refer to h(x) as the last-layer activations or last-
layer features. The linear classifier takes as inputs the last-layer
activations and outputs the class label. In detail, the linear
classifier is specified by weights W œ RC◊p and biases b œ RC ,
and the label the network attaches to image x is a simple
function of Wh(x) + b. In fact, it is arg maxcÕ ÈwcÕ ,hÍ+ bcÕ

i.e. the label is the index of the largest element in the vector
Wh(x) + b.

C. Network architecture and feature engineering. The net-
work is generally specified in two stages: First, an architecture
is prescribed; and then, for a given architecture, there are a
large number of parameters which determine the deep net-
work’s feature engineering, h(x). Collecting these parameters
in a vector ◊, we may also write h = h◊(x).

When the architecture specifies a truly deep network – and
not merely a shallow one – the variety of behaviors that the
di�erent choices of ◊ can produce is quite broad. To evoke, in
quite concrete terms, the process of specifying the nonlinear
transformation x ‘æ h◊(x), we speak of feature engineering.
In contrast, traditional machine learning often dealt with a
fixed collection of feature vectors that were not data-adaptive.

D. Training. Viewing the induced class labels as the network
outputs, and the architecture and problem size as fixed in
advance, the underlying class labelling algorithm depends on
the parameter vector (◊,W , b). We think of ◊ as determining
the features to be used, and (W , b) as determining the linear
classifier that operates on the features to produce the labels.
The number of parameters that must be determined is quite

large. In practice, these parameters must be learned from
data, by the process commonly known as training.

More concretely, consider a balanced dataset, having ex-
actly N training examples in each class,

tC

c=1{xi,c}
N
i=1, where

xi,c denotes the i-th example in the c-th class. The parame-
ters (◊,W , b) are fit by minimizing, usually using stochastic
gradient descent (SGD), the objective function:

min
◊,W ,b

Cÿ

c=1

Nÿ

i=1

L (Wh◊(xi,c) + b,yc) . [2]

Above, we denote by L : RC
◊RC

æ R+ the cross-entropy
loss function and by yc œ RC one-hot vectors, i.e, vectors
containing one in the c-th entry and zero elsewhere. We
refer to this quantity as the training loss and the number of
incorrect class predictions made by the network as the training
error. Notice that, in TPT, the loss is non-zero even if the
classification error is zero.

E. Datasets. We consider the MNIST, FashionMNIST, CI-
FAR10, CIFAR100, SVHN, STL10 and ImageNet datasets
(7–10). MNIST was sub-sampled to N=5000 examples per
class, SVHN to N=4600 examples per class, and ImageNet
to N=600 examples per class. The remaining datasets are al-
ready balanced. The images were pre-processed, pixel-wise, by
subtracting the mean and dividing by the standard deviation.
No data augmentation was used.

F. Networks. We train the VGG, ResNet, and DenseNet ar-
chitectures (11–13). For each of the three architecture types,
we chose the network depth through trial-and-error in a se-
ries of preparatory experiments in order to adapt to the
varying di�culties of the datasets. The final chosen net-
works were VGG19, ResNet152, and DenseNet201 for Im-
ageNet; VGG13, ResNet50, and DenseNet250 for STL10;
VGG13, ResNet50, and DenseNet250 for CIFAR100; VGG13,
ResNet18, and DenseNet40 for CIFAR10; VGG11, ResNet18,
and DenseNet250 for FashionMNIST; and VGG11, ResNet18,
and DenseNet40 for MNIST and SVHN. DenseNet201 and
DenseNet250 were trained using the memory-e�cient imple-
mentation proposed in (18). We replaced the dropout layers
in VGG with batch normalization and set the dropout rate in
DenseNet to zero.

G. Optimization methodology. Following common practice, we
minimize the cross-entropy loss using stochastic gradient de-
scent (SGD) with momentum 0.9. The weight decay is set
to 1◊10≠4 for ImageNet and 5◊10≠4 for the other datasets.
ImageNet is trained with a batch size of 256, across 8 GPUs,
and the other datasets are trained on a single GPU with a
batch size of 128. We train ImageNet for 300 epochs and the
other datasets for 350 epochs. The initial learning is annealed
by a factor of 10 at 1/2 and 3/4 for ImageNet; and 1/3 and 2/3
for the other the datasets. We sweep over 10 logarithmically-
spaced learning rates for ImageNet between 0.01 and 0.25, and
25 learning rates for the remaining datasets between 0.0001
and 0.25–picking the model resulting in the best test error in
the last epoch.

H. Large-scale experimentation. The total number of models
fully trained for this paper is tallied below:

Donoho et al. PNAS | August 20, 2020 | vol. XXX | no. XX | 3

during TPT, while Neural Collapse is progressing, the trained
models are improving in generalizability and in adversarial
robustness.

In Section 7 below we discuss the broader significance of
(NC1)-(NC4) and their relation to recent advances across
several rapidly developing ‘research fronts.’

To support our conclusions, we conduct empirical studies
that range over seven canonical classification datasets (7–9), in-
cluding ImageNet (10), and three prototypical, contest-winning
architectures (11–13). These datasets and networks were cho-
sen for their prevalence in the literature as benchmarks (14–16),
rea�rmed by their easy availability as part of the popular
deep learning framework PyTorch (17). As explained below,
these observations have important implications for our under-
standing of numerous theoretical and empirical observations
in deep learning.

2. Setting and methodology

All subsequent experiments are built upon the general setting
and methodology described below.

A. Image classification. In the image classification problem,
we are given a training dataset of d-dimensional images, the
goal is to train a predictor to identify the class – out of C
total classes – to which any input image x œ Rd belongs.

B. Deep learning for classification. In this work, we consider
the predictor to be a deep neural network, which typically
consists of numerous layers followed by a linear classifier. We
view the layers before the classifier as computing a function,
xæ h(x), where h : Rd

æ Rp outputs a p-dimensional feature
vector. We refer to h(x) as the last-layer activations or last-
layer features. The linear classifier takes as inputs the last-layer
activations and outputs the class label. In detail, the linear
classifier is specified by weights W œ RC◊p and biases b œ RC ,
and the label the network attaches to image x is a simple
function of Wh(x) + b. In fact, it is arg maxcÕ ÈwcÕ ,hÍ+ bcÕ

i.e. the label is the index of the largest element in the vector
Wh(x) + b.

C. Network architecture and feature engineering. The net-
work is generally specified in two stages: First, an architecture
is prescribed; and then, for a given architecture, there are a
large number of parameters which determine the deep net-
work’s feature engineering, h(x). Collecting these parameters
in a vector ◊, we may also write h = h◊(x).

When the architecture specifies a truly deep network – and
not merely a shallow one – the variety of behaviors that the
di�erent choices of ◊ can produce is quite broad. To evoke, in
quite concrete terms, the process of specifying the nonlinear
transformation x ‘æ h◊(x), we speak of feature engineering.
In contrast, traditional machine learning often dealt with a
fixed collection of feature vectors that were not data-adaptive.

D. Training. Viewing the induced class labels as the network
outputs, and the architecture and problem size as fixed in
advance, the underlying class labelling algorithm depends on
the parameter vector (◊,W , b). We think of ◊ as determining
the features to be used, and (W , b) as determining the linear
classifier that operates on the features to produce the labels.
The number of parameters that must be determined is quite

large. In practice, these parameters must be learned from
data, by the process commonly known as training.

More concretely, consider a balanced dataset, having ex-
actly N training examples in each class,

tC

c=1{xi,c}
N
i=1, where

xi,c denotes the i-th example in the c-th class. The parame-
ters (◊,W , b) are fit by minimizing, usually using stochastic
gradient descent (SGD), the objective function:

min
◊,W ,b

Cÿ

c=1

Nÿ

i=1

L (Wh◊(xi,c) + b,yc) . [2]

Above, we denote by L : RC
◊RC

æ R+ the cross-entropy
loss function and by yc œ RC one-hot vectors, i.e, vectors
containing one in the c-th entry and zero elsewhere. We
refer to this quantity as the training loss and the number of
incorrect class predictions made by the network as the training
error. Notice that, in TPT, the loss is non-zero even if the
classification error is zero.

E. Datasets. We consider the MNIST, FashionMNIST, CI-
FAR10, CIFAR100, SVHN, STL10 and ImageNet datasets
(7–10). MNIST was sub-sampled to N=5000 examples per
class, SVHN to N=4600 examples per class, and ImageNet
to N=600 examples per class. The remaining datasets are al-
ready balanced. The images were pre-processed, pixel-wise, by
subtracting the mean and dividing by the standard deviation.
No data augmentation was used.

F. Networks. We train the VGG, ResNet, and DenseNet ar-
chitectures (11–13). For each of the three architecture types,
we chose the network depth through trial-and-error in a se-
ries of preparatory experiments in order to adapt to the
varying di�culties of the datasets. The final chosen net-
works were VGG19, ResNet152, and DenseNet201 for Im-
ageNet; VGG13, ResNet50, and DenseNet250 for STL10;
VGG13, ResNet50, and DenseNet250 for CIFAR100; VGG13,
ResNet18, and DenseNet40 for CIFAR10; VGG11, ResNet18,
and DenseNet250 for FashionMNIST; and VGG11, ResNet18,
and DenseNet40 for MNIST and SVHN. DenseNet201 and
DenseNet250 were trained using the memory-e�cient imple-
mentation proposed in (18). We replaced the dropout layers
in VGG with batch normalization and set the dropout rate in
DenseNet to zero.

G. Optimization methodology. Following common practice, we
minimize the cross-entropy loss using stochastic gradient de-
scent (SGD) with momentum 0.9. The weight decay is set
to 1◊10≠4 for ImageNet and 5◊10≠4 for the other datasets.
ImageNet is trained with a batch size of 256, across 8 GPUs,
and the other datasets are trained on a single GPU with a
batch size of 128. We train ImageNet for 300 epochs and the
other datasets for 350 epochs. The initial learning is annealed
by a factor of 10 at 1/2 and 3/4 for ImageNet; and 1/3 and 2/3
for the other the datasets. We sweep over 10 logarithmically-
spaced learning rates for ImageNet between 0.01 and 0.25, and
25 learning rates for the remaining datasets between 0.0001
and 0.25–picking the model resulting in the best test error in
the last epoch.

H. Large-scale experimentation. The total number of models
fully trained for this paper is tallied below:
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ImageNet: 1 dataset◊ 3 nets◊ 10 lrs = 30 models.
Remainder: 6 datasets◊ 3 nets◊ 25 lrs = 450 models.

Total: 480 models.

The massive computational experiments reported here were
run painlessly using ClusterJob and ElastiCluster (19–21)
on the Stanford Sherlock HPC cluster and Google Compute
Engine virtual machines.

I. Moments of activations. During training, we snapshot the
network parameters at certain epochs. For each snapshotted
epoch, we pass the train images through the network, extract
their last-layer activations (using PyTorch hooks (22)), and
calculate these activations’ first and second moment statistics.

For a given dataset-network combination, we calculate the
train global-mean µG œ Rp:

µG , Ave
i,c

{hi,c},

and the train class-means µc œ Rp:

µc , Ave
i
{hi,c}, c = 1, . . . , C,

where Ave is the averaging operator.
Unless otherwise specified, for brevity, we refer in the text

to the globally-centered class-means, {µc ≠ µG}Cc=1, as just
class-means, since the globally-centered class-means are of
more interest.

Given the train class-means, we calculate the train total
covariance �T œ Rp◊p,

�T , Ave
i,c

)
(hi,c ≠ µG) (hi,c ≠ µG)€

*
,

the between-class covariance, �B œ Rp◊p,

�B ,Ave
c
{(µc ≠ µG)(µc ≠ µG)€}, [3]

and the within-class covariance, �W œ Rp◊p,

�W ,Ave
i,c

{(hi,c ≠ µc)(hi,c ≠ µc)€}. [4]

Recall from multivariate statistics that:

�T = �B + �W .

J. Formalization of Neural Collapse. With the above notation,
we now present a more mathematical description of Neural Col-
lapse, where æ indicates convergence as training progresses:

(NC1) Variability collapse: �W æ 0

(NC2) Convergence to Simplex ETF:
--Îµc ≠ µGÎ2 ≠ ÎµcÕ ≠ µGÎ2

--æ 0 ’ c, cÕ

Èµ̃c, µ̃cÕÍ æ
C

C ≠ 1”c,c
Õ ≠

1
C ≠ 1 ’ c, cÕ.

(NC3) Convergence to self-duality:
....
W

€

ÎW ÎF
≠

Ṁ

ÎṀÎF

....
F

æ 0 [5]

(NC4): Simplification to NCC:

arg max
cÕ

ÈwcÕ ,hÍ+ bcÕ æ arg min
cÕ

Îh≠ µcÕÎ2

where µ̃c = (µc ≠ µG)/Îµc ≠ µGÎ2 are the renormalized the
class-means, Ṁ = [µc ≠ µG, c = 1, . . . , C] œ Rp◊C is the
matrix obtained by stacking the class-means into the columns
of a matrix, and ”c,cÕ is the Kronecker delta symbol.

3. Results

To document the observations we make in Section 1, we provide
a series of figures and tables below. We briefly list here our
claims and identify the source of our evidence.

• Means and classifiers become equinorm: Figure 2

• Means and classifiers become maximally equiangular:
Figures 3 and 4

• Means and classifiers become self-dual: Figure 5

• Train within-class covariance collapses: Figure 6

• Classifier approaches nearest class-center: Figure 7

• TPT improves robustness: Figure 8

• TPT improves test-error: Table 1

All figures in this article are formatted as follows: Each of
the seven array columns is a canonical dataset for benchmark-
ing classification performance – ordered left to right roughly
by ascending di�culty. Each of the three array rows is a
prototypical deep classifying network. On the horizontal axis
of each cell is the epoch of training. For each dataset-network
combination, the red vertical line marks the begining of the
e�ective beginning of TPT, i.e, the epoch when the training
accuracy reaches 99.6% for ImageNet and 99.9% for the re-
maining datasets; we do not use 100% as it has been reported
(23–25) that several of these datasets contain inconsistencies
and mislabels which sometimes prevent absolute memoriza-
tion. Additionally, orange lines denote measurements on the
network classifier, while blue lines denote measurements on
the activation class-means.

4. Discussion

Taken together, Figures 2-7 give evidence for Neural Collapse.
First, Figure 2 shows how, as training progresses, the variation
in the norms of the class-means (and classifiers) decreases–
indicating that the class-means (and classifiers) are converging
to an equinormed state.

Then, Figure 3 indicates that all pairs of class-means (or
classifiers) tend towards forming equal-sized angles. Figure 4
additionally reveals that the cosines of these angles converge
to ≠ 1

C≠1 – the maximum possible given the constraints. This
maximal-equiangularity, combined with equinormness, implies
that the class-means and classifiers converge to Simplex ETFs.

The above experiments by themselves do not indicate any
relationship between the final converged states of the class-
means and classifiers, even though both converge to some
Simplex ETF. Such a relationship is revealed by Figure 5 –
showing how they converge to the same Simplex ETF, up to
rescaling.
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ImageNet: 1 dataset◊ 3 nets◊ 10 lrs = 30 models.
Remainder: 6 datasets◊ 3 nets◊ 25 lrs = 450 models.

Total: 480 models.

The massive computational experiments reported here were
run painlessly using ClusterJob and ElastiCluster (19–21)
on the Stanford Sherlock HPC cluster and Google Compute
Engine virtual machines.

I. Moments of activations. During training, we snapshot the
network parameters at certain epochs. For each snapshotted
epoch, we pass the train images through the network, extract
their last-layer activations (using PyTorch hooks (22)), and
calculate these activations’ first and second moment statistics.

For a given dataset-network combination, we calculate the
train global-mean µG œ Rp:

µG , Ave
i,c

{hi,c},

and the train class-means µc œ Rp:

µc , Ave
i
{hi,c}, c = 1, . . . , C,

where Ave is the averaging operator.
Unless otherwise specified, for brevity, we refer in the text

to the globally-centered class-means, {µc ≠ µG}Cc=1, as just
class-means, since the globally-centered class-means are of
more interest.

Given the train class-means, we calculate the train total
covariance �T œ Rp◊p,

�T , Ave
i,c

)
(hi,c ≠ µG) (hi,c ≠ µG)€

*
,

the between-class covariance, �B œ Rp◊p,

�B ,Ave
c
{(µc ≠ µG)(µc ≠ µG)€}, [3]

and the within-class covariance, �W œ Rp◊p,

�W ,Ave
i,c

{(hi,c ≠ µc)(hi,c ≠ µc)€}. [4]

Recall from multivariate statistics that:

�T = �B + �W .

J. Formalization of Neural Collapse. With the above notation,
we now present a more mathematical description of Neural Col-
lapse, where æ indicates convergence as training progresses:

(NC1) Variability collapse: �W æ 0

(NC2) Convergence to Simplex ETF:
--Îµc ≠ µGÎ2 ≠ ÎµcÕ ≠ µGÎ2

--æ 0 ’ c, cÕ

Èµ̃c, µ̃cÕÍ æ
C

C ≠ 1”c,c
Õ ≠

1
C ≠ 1 ’ c, cÕ.

(NC3) Convergence to self-duality:
....
W

€

ÎW ÎF
≠

Ṁ

ÎṀÎF

....
F

æ 0 [5]

(NC4): Simplification to NCC:

arg max
cÕ

ÈwcÕ ,hÍ+ bcÕ æ arg min
cÕ

Îh≠ µcÕÎ2

where µ̃c = (µc ≠ µG)/Îµc ≠ µGÎ2 are the renormalized the
class-means, Ṁ = [µc ≠ µG, c = 1, . . . , C] œ Rp◊C is the
matrix obtained by stacking the class-means into the columns
of a matrix, and ”c,cÕ is the Kronecker delta symbol.

3. Results

To document the observations we make in Section 1, we provide
a series of figures and tables below. We briefly list here our
claims and identify the source of our evidence.

• Means and classifiers become equinorm: Figure 2

• Means and classifiers become maximally equiangular:
Figures 3 and 4

• Means and classifiers become self-dual: Figure 5

• Train within-class covariance collapses: Figure 6

• Classifier approaches nearest class-center: Figure 7

• TPT improves robustness: Figure 8

• TPT improves test-error: Table 1

All figures in this article are formatted as follows: Each of
the seven array columns is a canonical dataset for benchmark-
ing classification performance – ordered left to right roughly
by ascending di�culty. Each of the three array rows is a
prototypical deep classifying network. On the horizontal axis
of each cell is the epoch of training. For each dataset-network
combination, the red vertical line marks the begining of the
e�ective beginning of TPT, i.e, the epoch when the training
accuracy reaches 99.6% for ImageNet and 99.9% for the re-
maining datasets; we do not use 100% as it has been reported
(23–25) that several of these datasets contain inconsistencies
and mislabels which sometimes prevent absolute memoriza-
tion. Additionally, orange lines denote measurements on the
network classifier, while blue lines denote measurements on
the activation class-means.

4. Discussion

Taken together, Figures 2-7 give evidence for Neural Collapse.
First, Figure 2 shows how, as training progresses, the variation
in the norms of the class-means (and classifiers) decreases–
indicating that the class-means (and classifiers) are converging
to an equinormed state.

Then, Figure 3 indicates that all pairs of class-means (or
classifiers) tend towards forming equal-sized angles. Figure 4
additionally reveals that the cosines of these angles converge
to ≠ 1

C≠1 – the maximum possible given the constraints. This
maximal-equiangularity, combined with equinormness, implies
that the class-means and classifiers converge to Simplex ETFs.

The above experiments by themselves do not indicate any
relationship between the final converged states of the class-
means and classifiers, even though both converge to some
Simplex ETF. Such a relationship is revealed by Figure 5 –
showing how they converge to the same Simplex ETF, up to
rescaling.
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Neural Collapse of Features

ImageNet: 1 dataset◊ 3 nets◊ 10 lrs = 30 models.
Remainder: 6 datasets◊ 3 nets◊ 25 lrs = 450 models.

Total: 480 models.

The massive computational experiments reported here were
run painlessly using ClusterJob and ElastiCluster (19–21)
on the Stanford Sherlock HPC cluster and Google Compute
Engine virtual machines.

I. Moments of activations. During training, we snapshot the
network parameters at certain epochs. For each snapshotted
epoch, we pass the train images through the network, extract
their last-layer activations (using PyTorch hooks (22)), and
calculate these activations’ first and second moment statistics.

For a given dataset-network combination, we calculate the
train global-mean µG œ Rp:

µG , Ave
i,c

{hi,c},

and the train class-means µc œ Rp:

µc , Ave
i
{hi,c}, c = 1, . . . , C,

where Ave is the averaging operator.
Unless otherwise specified, for brevity, we refer in the text

to the globally-centered class-means, {µc ≠ µG}Cc=1, as just
class-means, since the globally-centered class-means are of
more interest.

Given the train class-means, we calculate the train total
covariance �T œ Rp◊p,

�T , Ave
i,c

)
(hi,c ≠ µG) (hi,c ≠ µG)€

*
,

the between-class covariance, �B œ Rp◊p,

�B ,Ave
c
{(µc ≠ µG)(µc ≠ µG)€}, [3]

and the within-class covariance, �W œ Rp◊p,

�W ,Ave
i,c

{(hi,c ≠ µc)(hi,c ≠ µc)€}. [4]

Recall from multivariate statistics that:

�T = �B + �W .

J. Formalization of Neural Collapse. With the above notation,
we now present a more mathematical description of Neural Col-
lapse, where æ indicates convergence as training progresses:

(NC1) Variability collapse: �W æ 0

(NC2) Convergence to Simplex ETF:
--Îµc ≠ µGÎ2 ≠ ÎµcÕ ≠ µGÎ2

--æ 0 ’ c, cÕ

Èµ̃c, µ̃cÕÍ æ
C

C ≠ 1”c,c
Õ ≠

1
C ≠ 1 ’ c, cÕ.

(NC3) Convergence to self-duality:
....
W

€

ÎW ÎF
≠

Ṁ

ÎṀÎF

....
F

æ 0 [5]

(NC4): Simplification to NCC:

arg max
cÕ

ÈwcÕ ,hÍ+ bcÕ æ arg min
cÕ

Îh≠ µcÕÎ2

where µ̃c = (µc ≠ µG)/Îµc ≠ µGÎ2 are the renormalized the
class-means, Ṁ = [µc ≠ µG, c = 1, . . . , C] œ Rp◊C is the
matrix obtained by stacking the class-means into the columns
of a matrix, and ”c,cÕ is the Kronecker delta symbol.

3. Results

To document the observations we make in Section 1, we provide
a series of figures and tables below. We briefly list here our
claims and identify the source of our evidence.

• Means and classifiers become equinorm: Figure 2

• Means and classifiers become maximally equiangular:
Figures 3 and 4

• Means and classifiers become self-dual: Figure 5

• Train within-class covariance collapses: Figure 6

• Classifier approaches nearest class-center: Figure 7

• TPT improves robustness: Figure 8

• TPT improves test-error: Table 1

All figures in this article are formatted as follows: Each of
the seven array columns is a canonical dataset for benchmark-
ing classification performance – ordered left to right roughly
by ascending di�culty. Each of the three array rows is a
prototypical deep classifying network. On the horizontal axis
of each cell is the epoch of training. For each dataset-network
combination, the red vertical line marks the begining of the
e�ective beginning of TPT, i.e, the epoch when the training
accuracy reaches 99.6% for ImageNet and 99.9% for the re-
maining datasets; we do not use 100% as it has been reported
(23–25) that several of these datasets contain inconsistencies
and mislabels which sometimes prevent absolute memoriza-
tion. Additionally, orange lines denote measurements on the
network classifier, while blue lines denote measurements on
the activation class-means.

4. Discussion

Taken together, Figures 2-7 give evidence for Neural Collapse.
First, Figure 2 shows how, as training progresses, the variation
in the norms of the class-means (and classifiers) decreases–
indicating that the class-means (and classifiers) are converging
to an equinormed state.

Then, Figure 3 indicates that all pairs of class-means (or
classifiers) tend towards forming equal-sized angles. Figure 4
additionally reveals that the cosines of these angles converge
to ≠ 1

C≠1 – the maximum possible given the constraints. This
maximal-equiangularity, combined with equinormness, implies
that the class-means and classifiers converge to Simplex ETFs.

The above experiments by themselves do not indicate any
relationship between the final converged states of the class-
means and classifiers, even though both converge to some
Simplex ETF. Such a relationship is revealed by Figure 5 –
showing how they converge to the same Simplex ETF, up to
rescaling.
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ImageNet: 1 dataset◊ 3 nets◊ 10 lrs = 30 models.
Remainder: 6 datasets◊ 3 nets◊ 25 lrs = 450 models.

Total: 480 models.

The massive computational experiments reported here were
run painlessly using ClusterJob and ElastiCluster (19–21)
on the Stanford Sherlock HPC cluster and Google Compute
Engine virtual machines.

I. Moments of activations. During training, we snapshot the
network parameters at certain epochs. For each snapshotted
epoch, we pass the train images through the network, extract
their last-layer activations (using PyTorch hooks (22)), and
calculate these activations’ first and second moment statistics.

For a given dataset-network combination, we calculate the
train global-mean µG œ Rp:

µG , Ave
i,c

{hi,c},

and the train class-means µc œ Rp:

µc , Ave
i
{hi,c}, c = 1, . . . , C,

where Ave is the averaging operator.
Unless otherwise specified, for brevity, we refer in the text

to the globally-centered class-means, {µc ≠ µG}Cc=1, as just
class-means, since the globally-centered class-means are of
more interest.

Given the train class-means, we calculate the train total
covariance �T œ Rp◊p,

�T , Ave
i,c

)
(hi,c ≠ µG) (hi,c ≠ µG)€

*
,

the between-class covariance, �B œ Rp◊p,

�B ,Ave
c
{(µc ≠ µG)(µc ≠ µG)€}, [3]

and the within-class covariance, �W œ Rp◊p,

�W ,Ave
i,c

{(hi,c ≠ µc)(hi,c ≠ µc)€}. [4]

Recall from multivariate statistics that:

�T = �B + �W .

J. Formalization of Neural Collapse. With the above notation,
we now present a more mathematical description of Neural Col-
lapse, where æ indicates convergence as training progresses:

(NC1) Variability collapse: �W æ 0

(NC2) Convergence to Simplex ETF:
--Îµc ≠ µGÎ2 ≠ ÎµcÕ ≠ µGÎ2

--æ 0 ’ c, cÕ

Èµ̃c, µ̃cÕÍ æ
C

C ≠ 1”c,c
Õ ≠

1
C ≠ 1 ’ c, cÕ.

(NC3) Convergence to self-duality:
....
W

€

ÎW ÎF
≠

Ṁ

ÎṀÎF

....
F

æ 0 [5]

(NC4): Simplification to NCC:

arg max
cÕ

ÈwcÕ ,hÍ+ bcÕ æ arg min
cÕ

Îh≠ µcÕÎ2

where µ̃c = (µc ≠ µG)/Îµc ≠ µGÎ2 are the renormalized the
class-means, Ṁ = [µc ≠ µG, c = 1, . . . , C] œ Rp◊C is the
matrix obtained by stacking the class-means into the columns
of a matrix, and ”c,cÕ is the Kronecker delta symbol.

3. Results

To document the observations we make in Section 1, we provide
a series of figures and tables below. We briefly list here our
claims and identify the source of our evidence.

• Means and classifiers become equinorm: Figure 2

• Means and classifiers become maximally equiangular:
Figures 3 and 4

• Means and classifiers become self-dual: Figure 5

• Train within-class covariance collapses: Figure 6

• Classifier approaches nearest class-center: Figure 7

• TPT improves robustness: Figure 8

• TPT improves test-error: Table 1

All figures in this article are formatted as follows: Each of
the seven array columns is a canonical dataset for benchmark-
ing classification performance – ordered left to right roughly
by ascending di�culty. Each of the three array rows is a
prototypical deep classifying network. On the horizontal axis
of each cell is the epoch of training. For each dataset-network
combination, the red vertical line marks the begining of the
e�ective beginning of TPT, i.e, the epoch when the training
accuracy reaches 99.6% for ImageNet and 99.9% for the re-
maining datasets; we do not use 100% as it has been reported
(23–25) that several of these datasets contain inconsistencies
and mislabels which sometimes prevent absolute memoriza-
tion. Additionally, orange lines denote measurements on the
network classifier, while blue lines denote measurements on
the activation class-means.

4. Discussion

Taken together, Figures 2-7 give evidence for Neural Collapse.
First, Figure 2 shows how, as training progresses, the variation
in the norms of the class-means (and classifiers) decreases–
indicating that the class-means (and classifiers) are converging
to an equinormed state.

Then, Figure 3 indicates that all pairs of class-means (or
classifiers) tend towards forming equal-sized angles. Figure 4
additionally reveals that the cosines of these angles converge
to ≠ 1

C≠1 – the maximum possible given the constraints. This
maximal-equiangularity, combined with equinormness, implies
that the class-means and classifiers converge to Simplex ETFs.

The above experiments by themselves do not indicate any
relationship between the final converged states of the class-
means and classifiers, even though both converge to some
Simplex ETF. Such a relationship is revealed by Figure 5 –
showing how they converge to the same Simplex ETF, up to
rescaling.
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Neural Collapse of Classifiers

ImageNet: 1 dataset◊ 3 nets◊ 10 lrs = 30 models.
Remainder: 6 datasets◊ 3 nets◊ 25 lrs = 450 models.

Total: 480 models.

The massive computational experiments reported here were
run painlessly using ClusterJob and ElastiCluster (19–21)
on the Stanford Sherlock HPC cluster and Google Compute
Engine virtual machines.

I. Moments of activations. During training, we snapshot the
network parameters at certain epochs. For each snapshotted
epoch, we pass the train images through the network, extract
their last-layer activations (using PyTorch hooks (22)), and
calculate these activations’ first and second moment statistics.

For a given dataset-network combination, we calculate the
train global-mean µG œ Rp:

µG , Ave
i,c

{hi,c},

and the train class-means µc œ Rp:

µc , Ave
i
{hi,c}, c = 1, . . . , C,

where Ave is the averaging operator.
Unless otherwise specified, for brevity, we refer in the text

to the globally-centered class-means, {µc ≠ µG}Cc=1, as just
class-means, since the globally-centered class-means are of
more interest.

Given the train class-means, we calculate the train total
covariance �T œ Rp◊p,

�T , Ave
i,c

)
(hi,c ≠ µG) (hi,c ≠ µG)€

*
,

the between-class covariance, �B œ Rp◊p,

�B ,Ave
c
{(µc ≠ µG)(µc ≠ µG)€}, [3]

and the within-class covariance, �W œ Rp◊p,

�W ,Ave
i,c

{(hi,c ≠ µc)(hi,c ≠ µc)€}. [4]

Recall from multivariate statistics that:

�T = �B + �W .

J. Formalization of Neural Collapse. With the above notation,
we now present a more mathematical description of Neural Col-
lapse, where æ indicates convergence as training progresses:

(NC1) Variability collapse: �W æ 0

(NC2) Convergence to Simplex ETF:
--Îµc ≠ µGÎ2 ≠ ÎµcÕ ≠ µGÎ2

--æ 0 ’ c, cÕ

Èµ̃c, µ̃cÕÍ æ
C

C ≠ 1”c,c
Õ ≠

1
C ≠ 1 ’ c, cÕ.

(NC3) Convergence to self-duality:
....
W

€

ÎW ÎF
≠

Ṁ

ÎṀÎF

....
F

æ 0 [5]

(NC4): Simplification to NCC:

arg max
cÕ

ÈwcÕ ,hÍ+ bcÕ æ arg min
cÕ

Îh≠ µcÕÎ2

where µ̃c = (µc ≠ µG)/Îµc ≠ µGÎ2 are the renormalized the
class-means, Ṁ = [µc ≠ µG, c = 1, . . . , C] œ Rp◊C is the
matrix obtained by stacking the class-means into the columns
of a matrix, and ”c,cÕ is the Kronecker delta symbol.

3. Results

To document the observations we make in Section 1, we provide
a series of figures and tables below. We briefly list here our
claims and identify the source of our evidence.

• Means and classifiers become equinorm: Figure 2

• Means and classifiers become maximally equiangular:
Figures 3 and 4

• Means and classifiers become self-dual: Figure 5

• Train within-class covariance collapses: Figure 6

• Classifier approaches nearest class-center: Figure 7

• TPT improves robustness: Figure 8

• TPT improves test-error: Table 1

All figures in this article are formatted as follows: Each of
the seven array columns is a canonical dataset for benchmark-
ing classification performance – ordered left to right roughly
by ascending di�culty. Each of the three array rows is a
prototypical deep classifying network. On the horizontal axis
of each cell is the epoch of training. For each dataset-network
combination, the red vertical line marks the begining of the
e�ective beginning of TPT, i.e, the epoch when the training
accuracy reaches 99.6% for ImageNet and 99.9% for the re-
maining datasets; we do not use 100% as it has been reported
(23–25) that several of these datasets contain inconsistencies
and mislabels which sometimes prevent absolute memoriza-
tion. Additionally, orange lines denote measurements on the
network classifier, while blue lines denote measurements on
the activation class-means.

4. Discussion

Taken together, Figures 2-7 give evidence for Neural Collapse.
First, Figure 2 shows how, as training progresses, the variation
in the norms of the class-means (and classifiers) decreases–
indicating that the class-means (and classifiers) are converging
to an equinormed state.

Then, Figure 3 indicates that all pairs of class-means (or
classifiers) tend towards forming equal-sized angles. Figure 4
additionally reveals that the cosines of these angles converge
to ≠ 1

C≠1 – the maximum possible given the constraints. This
maximal-equiangularity, combined with equinormness, implies
that the class-means and classifiers converge to Simplex ETFs.

The above experiments by themselves do not indicate any
relationship between the final converged states of the class-
means and classifiers, even though both converge to some
Simplex ETF. Such a relationship is revealed by Figure 5 –
showing how they converge to the same Simplex ETF, up to
rescaling.
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ImageNet: 1 dataset◊ 3 nets◊ 10 lrs = 30 models.
Remainder: 6 datasets◊ 3 nets◊ 25 lrs = 450 models.

Total: 480 models.

The massive computational experiments reported here were
run painlessly using ClusterJob and ElastiCluster (19–21)
on the Stanford Sherlock HPC cluster and Google Compute
Engine virtual machines.

I. Moments of activations. During training, we snapshot the
network parameters at certain epochs. For each snapshotted
epoch, we pass the train images through the network, extract
their last-layer activations (using PyTorch hooks (22)), and
calculate these activations’ first and second moment statistics.

For a given dataset-network combination, we calculate the
train global-mean µG œ Rp:

µG , Ave
i,c

{hi,c},

and the train class-means µc œ Rp:

µc , Ave
i
{hi,c}, c = 1, . . . , C,

where Ave is the averaging operator.
Unless otherwise specified, for brevity, we refer in the text

to the globally-centered class-means, {µc ≠ µG}Cc=1, as just
class-means, since the globally-centered class-means are of
more interest.

Given the train class-means, we calculate the train total
covariance �T œ Rp◊p,

�T , Ave
i,c

)
(hi,c ≠ µG) (hi,c ≠ µG)€

*
,

the between-class covariance, �B œ Rp◊p,

�B ,Ave
c
{(µc ≠ µG)(µc ≠ µG)€}, [3]

and the within-class covariance, �W œ Rp◊p,

�W ,Ave
i,c

{(hi,c ≠ µc)(hi,c ≠ µc)€}. [4]

Recall from multivariate statistics that:

�T = �B + �W .

J. Formalization of Neural Collapse. With the above notation,
we now present a more mathematical description of Neural Col-
lapse, where æ indicates convergence as training progresses:

(NC1) Variability collapse: �W æ 0

(NC2) Convergence to Simplex ETF:
--Îµc ≠ µGÎ2 ≠ ÎµcÕ ≠ µGÎ2

--æ 0 ’ c, cÕ

Èµ̃c, µ̃cÕÍ æ
C

C ≠ 1”c,c
Õ ≠

1
C ≠ 1 ’ c, cÕ.

(NC3) Convergence to self-duality:
....
W

€

ÎW ÎF
≠

Ṁ

ÎṀÎF

....
F

æ 0 [5]

(NC4): Simplification to NCC:

arg max
cÕ

ÈwcÕ ,hÍ+ bcÕ æ arg min
cÕ

Îh≠ µcÕÎ2

where µ̃c = (µc ≠ µG)/Îµc ≠ µGÎ2 are the renormalized the
class-means, Ṁ = [µc ≠ µG, c = 1, . . . , C] œ Rp◊C is the
matrix obtained by stacking the class-means into the columns
of a matrix, and ”c,cÕ is the Kronecker delta symbol.

3. Results

To document the observations we make in Section 1, we provide
a series of figures and tables below. We briefly list here our
claims and identify the source of our evidence.

• Means and classifiers become equinorm: Figure 2

• Means and classifiers become maximally equiangular:
Figures 3 and 4

• Means and classifiers become self-dual: Figure 5

• Train within-class covariance collapses: Figure 6

• Classifier approaches nearest class-center: Figure 7

• TPT improves robustness: Figure 8

• TPT improves test-error: Table 1

All figures in this article are formatted as follows: Each of
the seven array columns is a canonical dataset for benchmark-
ing classification performance – ordered left to right roughly
by ascending di�culty. Each of the three array rows is a
prototypical deep classifying network. On the horizontal axis
of each cell is the epoch of training. For each dataset-network
combination, the red vertical line marks the begining of the
e�ective beginning of TPT, i.e, the epoch when the training
accuracy reaches 99.6% for ImageNet and 99.9% for the re-
maining datasets; we do not use 100% as it has been reported
(23–25) that several of these datasets contain inconsistencies
and mislabels which sometimes prevent absolute memoriza-
tion. Additionally, orange lines denote measurements on the
network classifier, while blue lines denote measurements on
the activation class-means.

4. Discussion

Taken together, Figures 2-7 give evidence for Neural Collapse.
First, Figure 2 shows how, as training progresses, the variation
in the norms of the class-means (and classifiers) decreases–
indicating that the class-means (and classifiers) are converging
to an equinormed state.

Then, Figure 3 indicates that all pairs of class-means (or
classifiers) tend towards forming equal-sized angles. Figure 4
additionally reveals that the cosines of these angles converge
to ≠ 1

C≠1 – the maximum possible given the constraints. This
maximal-equiangularity, combined with equinormness, implies
that the class-means and classifiers converge to Simplex ETFs.

The above experiments by themselves do not indicate any
relationship between the final converged states of the class-
means and classifiers, even though both converge to some
Simplex ETF. Such a relationship is revealed by Figure 5 –
showing how they converge to the same Simplex ETF, up to
rescaling.
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7 Datasets:

´ MNIST, FashionMNIST, CI- FAR10, CIFAR100, SVHN, STL10 and ImageNet 
datasets 

´ MNIST was sub-sampled to N=5000 examples per class, SVHN to N=4600 
examples per class, and ImageNet to N=600 examples per class. 

´ The remaining datasets are already balanced. 

´ The images were pre-processed, pixel-wise, by subtracting the mean and 
dividing by the standard deviation. 

´ No data augmentation was used. 



3 Models: VGG/ResNet/DenseNet

´ VGG19, ResNet152, and DenseNet201 for ImageNet; 

´ VGG13, ResNet50, and DenseNet250 for STL10; 

´ VGG13, ResNet50, and DenseNet250 for CIFAR100; 

´ VGG13, ResNet18, and DenseNet40 for CIFAR10; 

´ VGG11, ResNet18, and DenseNet250 for FashionMNIST; 

´ VGG11, ResNet18, and DenseNet40 for MNIST and SVHN. 



Results

Fig. 2. Train class-means become equinorm: The formatting and technical details are as described in Section 3. In each array cell, the vertical axis shows the coefficient of
variation of the centered class-mean norms as well as the network classifiers norms. In particular, the blue line shows Stdc(Îµc ≠ µGÎ2)/Avgc(Îµc ≠ µGÎ2) where {µc}
are the class-means of the last-layer activations of the training data and µG is the corresponding train global-mean; the orange line shows Stdc(ÎwcÎ2)/Avgc(ÎwcÎ2)
where wc is the last-layer classifier of the c-th class. As training progresses, the coefficients of variation of both class-means and classifiers decreases.

Fig. 3. Classifiers and train class-means approach equiangularity: The formatting and technical details are as described in Section 3. In each array cell, the vertical
axis shows the standard deviation of the cosines between pairs of centered class-means and classifiers across all distinct pairs of classes c and cÕ. Mathematically, denote
cosµ(c, cÕ) = Èµc ≠ µG, µcÕ ≠ µGÍ /(Îµc ≠ µGÎ2ÎµcÕ ≠ µGÎ2 and cosw(c, cÕ) = Èwc, wcÕ Í /(ÎwcÎ2ÎwcÕ Î2) where {wc}C

c=1, {µc}C
c=1, and µG are as

in Figure 2. We measure Stdc,cÕ ”=c(cosµ(c, cÕ)) (blue) and Stdc,cÕ ”=c(cosw(c, cÕ)) (orange). As training progresses, the standard deviations of the cosines approach zero
indicating equiangularity.

Fig. 4. Classifiers and train class-means approach maximal-angle equiangularity: The formatting and technical details are as described in Section 3. We plot in the
vertical axis of each cell the quantities Avgc,cÕ | cosµ(c, cÕ) + 1/(C ≠ 1)| (blue) and Avgc,cÕ | cosw(c, cÕ) + 1/(C ≠ 1)| (orange), where cosµ(c, cÕ) and cosw(c, cÕ)
are as in Figure 3. As training progresses, the convergence of these values to zero implies that all cosines converge to ≠1/(C ≠ 1). This corresponds to the maximum
separation possible for globally centered, equiangular vectors.
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Fig. 5. Classifier converges to train class-means: The formatting and technical details are as described in Section 3. In the vertical axis of each cell, we measure the
distance between the classifiers and the centered class-means, both rescaled to unit-norm. Mathematically, denote ÂM = Ṁ/ÎṀÎF where Ṁ = [µc ≠ µG : c =
1, . . . , C] œ Rp◊C is the matrix whose columns consist of the centered train class-means; denote ÂW = W /ÎW ÎF where W œ RC◊p is the last-layer classifier of the
network. We plot the quantity Î ÂW € ≠ ÂMÎ2

F on the vertical axis. This value decreases as a function of training, indicating the network classifier and the centered-means
matrices become proportional to each other (self-duality).

Fig. 6. Training within-class variation collapses: The formatting and technical details are as described in Section 3. In each array cell, the vertical axis (log-scaled) shows
the magnitude of the between-class covariance compared to the within-class covariance of the train activations . Mathematically, this is represented by Tr

)
�W �†

B

*
/C

where Tr{·} is the trace operator, �W is the within-class covariance of the last-layer activations of the training data, �B is the corresponding between-class covariance, C is
the total number of classes, and [·]† is Moore-Penrose pseudoinverse. This value decreases as a function of training – indicating collapse of within-class variation.

Fig. 7. Classifier behavior approaches that of Nearest Class-Center: The formatting and technical details are as described in Section 3. In each array cell, we plot the
proportion of examples (vertical axis) in the testing set where network classifier disagrees with the result that would have been obtained by choosing arg minc Îh ≠ µcÎ2
where h is a last-layer test activation, and {µc}C

c=1 are the class-means of the last-layer train activations. As training progresses, the disagreement tends to zero, showing the
classifier’s behavioral simplification to the nearest train class-mean decision rule.
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Propositions

´ LDA:
´ NC1 +

´ NC2 +

´ Linear Discriminant Analysis (LDA)

´ Max-Margin classifier:
´ NC1 +

´ NC2 +

´ Max-Margin Classifier

NC3 + NC4
(nearest neighbor
classifier)

NC3 + NC4
(nearest neighbor
classifier)



Summary

´ Contraction within class

´ Separation between class

´ After the zero-training-error (terminal phase of training), 
´ Feature representation approaches the regular simplex of C vertices

´ Classifier converges to the nearest neighbor rule (LDA)



Translation and Deformation
Invariances in CNN
Stephane Mallat et al. Wavelet Scattering Networks



x(u) x1(u, k1)
x2(u, k2)

xJ(u, kJ)

k1 k2

 Deep Convolutional Networks

⇢L1
⇢LJ

xj = ⇢Lj xj�1

xj(u, kj) = ⇢
⇣X

k

xj�1(·, k) ? hkj ,k(u)
⌘

sum across channels

classification

• Lj is a linear combination of convolutions and subsampling:

• ⇢ is contractive: |⇢(u)� ⇢(u0)|  |u� u0|

⇢(u) = max(u, 0) or ⇢(u) = |u|



         Many Questions

• Why convolutions ? Translation covariance. 
• Why no overfitting ? Contractions, dimension reduction 

• Why hierarchical cascade ? 
• Why introducing non-linearities ? 
• How and what to linearise ? 
• What are the roles of the multiple channels in each layer ?

x(u) x1(u, k1)
x2(u, k2)

xJ(u, kJ)

k1 k2

⇢L1
⇢LJ classification

⇢Lj



     Linear Dimension Reduction

Level sets of f(x)

⌦t = {x : f(x) = t}

⌦1 ⌦2 ⌦3
Classes

by linear projections: invariants.

If level sets (classes) are parallel to a linear space

then variables are eliminated

�(x)

x

Project 2 8

�(x) = ↵⌃̂�1
W (µ̂1 � µ̂0)

µ̂k =
1

|Ck|
X

i2Ck

xi

⌃̂W =
1X

k=0

X

i2Ck

(xi � µ̂k)(xi � µ̂k)
T

Project 2 8

�(x) = ↵⌃̂�1
W (µ̂1 � µ̂0)

µ̂k =
1

|Ck|
X

i2Ck

xi

⌃̂W =
X

k

X

i2Ck

(xi � µ̂k)(xi � µ̂k)
T

Project 2 8

�(x) = ↵⌃̂�1
W (µ̂1 � µ̂0)

µ̂k =
1

|Ck|
X

i2Ck

xi

⌃̂W =
X

k

X

i2Ck

(xi � µ̂k)(xi � µ̂k)
T



Linearise for Dimensionality Reduction

Level sets of f(x)

⌦t = {x : f(x) = t}

• If level sets ⌦t are not parallel to a linear space

- Linearise them with a change of variable �(x)

- Then reduce dimension with linear projections

Classes

⌦1
⌦2

⌦3

• Di�cult because ⌦t are high-dimensional, irregular,
known on few samples.

�(x)

x



Level Set Geometry: Symmetries

• A symmetry is an operator g which preserves level sets:

8x , f(g.x) = f(x) .: global

g
g

Level sets: classes

⌦1

⌦2

• Curse of dimensionality ) not local but global geometry

f(g1.g2.x) = f(g2.x) = f(x)

If g1 and g2 are symmetries then g1.g2 is also a symmetry

, characterised by their global symmetries.



       Groups of symmetries

• G = { all symmetries } is a group: unknown

8(g, g0) 2 G2 ) g.g0 2 G

8g 2 G , g�1 2 G

(g.g0).g00 = g.(g0.g00)

Inverse:

Associative:

If commutative g.g0 = g0.g : Abelian group.

• Group of dimension n if it has n generators:

g = gp1
1 gp2

2 ... gpn
n

• Lie group: infinitely small generators (Lie Algebra)



x(u) x0(u)

 Translation and Deformations

Video of Philipp Scott Johnson

• Digit classification:

- Globally invariant to the translation group

- Locally invariant to small di↵eomorphisms

Linearize small
di↵eomorphisms:
) Lipschitz regular

https://www.youtube.com/watch?v=nUDIoN-_Hxs



  Translations and Deformations

• Invariance to translations:

g.x(u) = x(u� c) ) �(g.x) = �(x) .

• Small di↵eomorphisms: g.x(u) = x(u� ⌧(u))

Metric: kgk = kr⌧k1 maximum scaling

Linearisation by Lipschitz continuity

k�(x)� �(g.x)k  C kr⌧k1 .

k�(x)� �(x0)k � C�1 |f(x)� f(x0)|

• Discriminative change of variable:



|bx(�)||bx⌧ (�)|

• Fourier transform x̂(!) =
R
x(t) e�i!t dt

The modulus is invariant to translations:

) k|x̂|� |x̂⌧ |k � kr⌧k1 kxk

�(x) = |x̂| = |x̂c|

   Fourier Deformation Instability

| |x̂⌧ (�)|� |x̂(�)| | is big at high frequencies
• Instabilites to small deformations x� (t) = x(t� �(t)) :

!

xc(t) = x(t� c) ) x̂c(!) = e�ic! x̂(!)

⌧(t) = ✏ t



• Dilated:

Unitary: �Wx�2 = �x�2 .

• Complex wavelet:  (t) =  a(t) + i b(t)

x ?  �(t) =
Z

x(u) �(t� u) du

⇥�(t) = 2�j ⇥(2�jt) with � = 2�j .

         Wavelet Transform

|�̂�(⇥)|2

�

|�̂��(⇥)|2

�� �0

|�̂(⇥)|2��(t)
���(t)

Wx =
✓

x ? �(t)
x ?  �(t)

◆

t,�

• Wavelet transform:

x̂ (�)



rotated and dilated:

real parts imaginary parts

• Complex wavelet:  (t) =  a(t) + i b(t) , t = (t1, t2)

 �(t) = 2�j  (2�jrt) with � = (2j , r)

       Image Wavelet Transform

Wx =
✓

x ? �(t)
x ?  �(t)

◆

t,�

Unitary: �Wx�2 = �x�2 .

• Wavelet transform:

|�̂�(⇥)|2

�1

�2



Why Wavelets?

´ Complex band limited Wavelets are uniformly stable to deformations 

´ Wavelets are sparse representations of functions

´ Wavelets separate multiscale information

´ Wavelets can be locally translation invariant

• Wavelets are uniformly stable to deformations:

if  �,⌧ (t) =  �(t� ⌧(t)) then

⇤⇥� � ⇥�,⇥⇤ ⇥ C sup
t

|⌅�(t)| .

     Why Wavelets ?

• Wavelets separate multiscale information.

• Wavelets provide sparse representations.



Sparsity of Wavelet Transforms

x(t)

|x ⇥ ��1(t)| =
���
Z

x(u)��1(t� u) du
���

 �1

1/�1

     Singular Functions

|x ⇥ ��1(t)|



Singularity is preserved in multiscale transform

x(t)

|x ⇥ ��1(t)| =
���
Z

x(u)��1(t� u) du
���

 �1

1/�1

     Singular Functions

|x ⇥ ��1(t)|  �2

x(t)

|W1|x =

✓
x ? �2J
|x ?  �1 |

◆

�1

First wavelet transform

Modulus improves invariance:

W1x =

✓

x ?  �1

◆

�1

x ? �2J

    Wavelet Translation Invariance

x ?  �1(t) = x ?  a
�1

(t) + i x ?  b
�1

(t)|x ?  �1(t)| =
q

|x ?  a
�1

(t)|2 + |x ?  b
�1

(t)|2

|x ?  �1 | ? �2J (t)

2J

local translation invariance
x ? �2J (t)

full translation invariance

2J = 1

Second wavelet transform modulus

|W2| |x ?  �1 |=
✓

|x ?  �1 | ? �2J (t)
||x ?  �1 | ?  �2(t)|

◆

�2



x ?  �1(t) = x ?  a
�1

(t) + i x ?  b
�1

(t)

    Wavelet Translation Invariance



• The modulus |x ?  �1 | is a regular envelop

    Wavelet Translation Invariance

pooling|x ?  �1(t)| =
q

|x ?  a
�1

(t)|2 + |x ?  b
�1

(t)|2



• The modulus |x ?  �1 | is a regular envelop

|x ?  �1 | ? �(t)

• The average |x ?  �1 | ? �(t) is invariant to small translations

relatively to the support of �.

    Wavelet Translation Invariance



• The modulus |x ?  �1 | is a regular envelop

|x ?  �1 | ? �(t)

• The average |x ?  �1 | ? �(t) is invariant to small translations

relatively to the support of �.

lim
�!1

|x ?  �1 | ? �(t) =
Z

|x ?  �1(u)| du = kx ?  �1k1

    Wavelet Translation Invariance



|x ?  �1 |

• The high frequencies of |x ?  �1 | are in wavelet coe�cients:

W |x ?  �1 | =
✓

|x ?  �1 | ? �(t)
|x ?  �1 | ?  �2(t)

◆

t,�2

    Recovering Lost Information

8�1 ,�2 , | | x ?  �1 | ?  �2 | ? �(t)

• Translation invariance by time averaging the amplitude:

|x ⇤⇥ �1 | ⇤ �
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

Scale

21

|x ?  21,✓|

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34

J = 3
C = 6
Q = 1

J = 5
C = 8
Q = 1

J = 3
C = 4
Q = 2

1.2

1.2

1.2

0

0

0

φJ

φJ

φJ

{ψθ,j}j,θ

{ψθ,j}j,θ

{ψθ,j}j,θ

A(ω)

A(ω)

A(ω)

θ

j

Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

|W1|

      Wavelet Filter Bank
x(u)⇢(↵) = |↵|

• Sparse representation

|x ?  2j ,✓|

If u � 0 then ⇢(u) = u

⇢ has no e↵ect after an averaging.



- it preserves the norm �|W |x� = �x�

|W |x =
✓

x ⇤ �(t)
|x ⇤ ⇥�(t)|

◆

t,�

is non-linear

Wx =
✓

x ⇤ �(t)
x ⇤ ⇥�(t)

◆

t,�

is linear and kWxk = kxk

- it is contractive ⇤|W |x� |W |y⇤ ⇥ ⇤x� y⇤
because for (a, b) ⇤ C2 ||a|� |b|| ⇥ |a� b|

     Contraction

⇢(u) = |u|



Wavelet Scattering Network

• Cascade of contractive operators

⇤|Wk|x� |Wk|x0⇤ ⇥ ⇤x� x0⇤ with �|Wk|x� = �x� .

       Cascade of Contractions

x

|W1|

|W2|

|W3|

x ? �

|x ?  �1 | ? �

||x ?  �1 | ?  �2 | ? �



Stability of Wavelet Scattering Transform



Summary: Wavelet Scattering Net

´ Architechture:
´ Convolutional filters: band-limited wavelets

´ Nonlinear activation: modulus (Lipschitz) 

´ Pooling: L1 norm as averaging 

´ Properties:
´ A Multiscale Sparse Representation

´ Norm Preservation (Parseval’s identity):

´ Contraction: 

Sx =

�

⇧⇧⇧⇧⇤

x ⇤� (u)
|x ⇤ ⇥�1 | ⇤ �(u)

||x ⇤⇥ �1 | ⇤ ⇥�2 | ⇤ �(u)
|||x ⇤⇥ �2 | ⇤ ⇥�2 | ⇤ ⇥�3 | ⇤ �(u)

...

⇥

⌃⌃⌃⌃⌅

u,�1,�2,�3,...

contractive kSx� Syk  kx� yk

preserves norms kSxk = kxk

stable to deformations x⌧ (t) = x(t� ⌧(t))

kSx� Sx⌧k  C sup
t

|r⌧(t)| kxk

) linear discriminative classification from �x = Sx

      Scattering  Properties

Theorem: For appropriate wavelets, a scattering is

• Cascade of contractive operators

⇤|Wk|x� |Wk|x0⇤ ⇥ ⇤x� x0⇤ with �|Wk|x� = �x� .

       Cascade of Contractions

x

|W1|

|W2|

|W3|

x ? �

|x ?  �1 | ? �

||x ?  �1 | ?  �2 | ? �



Background Summary

CNN

• Fully trained by large 
volume of data 

• Lots of parameters 
(largest model capacity) 

• Least “control” of 
regularity and robustness 

• Best performance but not 
explainable

Scattering

• No training until the 
classifier 

• No parameters in the 
convolutional layers 

• Most “control” of 
regularity and robustness 

• Strong performance and 
explainable features

What is in between?



Decomposed Convolutional Filters 
(DCF)
Xiuyuan Cheng et al.
https://arxiv.org/abs/1802.04145











Applications and extensions: 

´ Invertibility/completeness of representation [Waldspurger et al. ’12] 

´ Extension to signals on graphs [Chen et al. ’14] [Cheng et al. ’16] 

´ With general family of filters [Bolcskei et al. ’15] [Czaja et al. ’15] 



Wiatowski-Bolcskei’15

´ Scattering Net by Mallat et al. so far
´ Wavelet Linear filter

´ Nonlinear activation by modulus

´ Average pooling

´ Generalization by Wiatowski-Bolcskei’15
´ Filters as frames

´ Lipschitz continuous Nonlinearities

´ General Pooling: Max/Average/Nonlinear, etc.



Generalization of Wiatowski-Bolcskei’15

Scattering networks ([Mallat, 2012 ], [Wiatowski and HB, 2015 ])

feature map

feature vector �(f)

f

|f ⇤ g
�
(k)
1
|

· ⇤ �2

||f ⇤ g
�
(k)
1
| ⇤ g

�
(l)
2
|

· ⇤ �3

|f ⇤ g
�
(p)
1
|

· ⇤ �2

||f ⇤ g
�
(p)
1
| ⇤ g

�
(r)
2
|

· ⇤ �3

· ⇤ �1

General scattering networks guarantee [Wiatowski & HB, 2015 ]

- (vertical) translation invariance

- small deformation sensitivity

essentially irrespective of filters, non-linearities, and poolings!



Wavelet basis -> filter frame

´

Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Filters: Semi-discrete frame  n := {�n} [ {g�n}�n2⇤n

Ankfk
2
2  kf ⇤ �nk

2
2 +

X

�n2⇤n

kf ⇤ g�nk
2
 Bnkfk

2
2, 8f 2 L

2(Rd)

e.g.: Structured filters

e.g.: Learned filters



Frames: random or learned filters

Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Filters: Semi-discrete frame  n := {�n} [ {g�n}�n2⇤n

Ankfk
2
2  kf ⇤ �nk

2
2 +

X

�n2⇤n

kf ⇤ g�nk
2
 Bnkfk

2
2, 8f 2 L

2(Rd)

e.g.: Learned filters

Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Filters: Semi-discrete frame  n := {�n} [ {g�n}�n2⇤n

Ankfk
2
2  kf ⇤ �nk

2
2 +

X

�n2⇤n

kf ⇤ g�nk
2
 Bnkfk

2
2, 8f 2 L

2(Rd)

e.g.: Unstructured filters

e.g.: Learned filters



Nonlinear activations
Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Non-linearities: Point-wise and Lipschitz-continuous

kMn(f)�Mn(h)k2  Lnkf � hk2, 8 f, h 2 L
2(Rd)

) Satisfied by virtually all non-linearities used
in the deep learning literature!

ReLU: Ln = 1; modulus: Ln = 1; logistic sigmoid: Ln = 1
4 ; ...



Pooling Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Pooling: In continuous-time according to

f 7! S
d/2
n Pn(f)(Sn·),

where Sn � 1 is the pooling factor and Pn : L2(Rd) ! L
2(Rd) is

Rn-Lipschitz-continuous

) Emulates most poolings used in the deep learning literature!

e.g.: Pooling by sub-sampling Pn(f) = f with Rn = 1

Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Pooling: In continuous-time according to

f 7! S
d/2
n Pn(f)(Sn·),

where Sn � 1 is the pooling factor and Pn : L2(Rd) ! L
2(Rd) is

Rn-Lipschitz-continuous

) Emulates most poolings used in the deep learning literature!

e.g.: Pooling by sub-sampling Pn(f) = f with Rn = 1

Building blocks

Basic operations in the n-th network layer

f
...

g
�
(r)
n non-lin. pool.

g
�
(k)
n non-lin. pool.

Pooling: In continuous-time according to

f 7! S
d/2
n Pn(f)(Sn·),

where Sn � 1 is the pooling factor and Pn : L2(Rd) ! L
2(Rd) is

Rn-Lipschitz-continuous

) Emulates most poolings used in the deep learning literature!

e.g.: Pooling by averaging Pn(f) = f ⇤ �n with Rn = k�nk1



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

Bn  min{1, L�2
n R

�2
n }, 8n 2 N.

Let the pooling factors be Sn � 1, n 2 N. Then,

|||�n(Ttf)� �n(f)||| = O

✓
ktk

S1 . . . Sn

◆
,

for all f 2 L
2(Rd), t 2 Rd

, n 2 N.

The condition

Bn  min{1, L�2
n R

�2
n }, 8n 2 N,

is easily satisfied by normalizing the filters {g�n}�n2⇤n .



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

Bn  min{1, L�2
n R

�2
n }, 8n 2 N.

Let the pooling factors be Sn � 1, n 2 N. Then,

|||�n(Ttf)� �n(f)||| = O

✓
ktk

S1 . . . Sn

◆
,

for all f 2 L
2(Rd), t 2 Rd

, n 2 N.

) Features become more invariant with increasing network depth!



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

Bn  min{1, L�2
n R

�2
n }, 8n 2 N.

Let the pooling factors be Sn � 1, n 2 N. Then,

|||�n(Ttf)� �n(f)||| = O

✓
ktk

S1 . . . Sn

◆
,

for all f 2 L
2(Rd), t 2 Rd

, n 2 N.

Full translation invariance: If lim
n!1

S1 · S2 · . . . · Sn = 1, then

lim
n!1

|||�n(Ttf)� �n(f)||| = 0



Philosophy behind invariance results

Mallat’s “horizontal” translation invariance [Mallat, 2012 ]:

lim
J!1

|||�W (Ttf)� �W (f)||| = 0, 8f 2 L
2(Rd), 8t 2 Rd

- features become invariant in every network layer, but needs
J ! 1

- applies to wavelet transform and modulus non-linearity without
pooling

“Vertical” translation invariance:

lim
n!1

|||�n(Ttf)� �n(f)||| = 0, 8f 2 L
2(Rd), 8t 2 Rd

- features become more invariant with increasing network depth

- applies to general filters, general non-linearities, and general
poolings



Group Invariant and Equivariant
Networks
Cohen, Welling, https://arxiv.org/abs/1602.07576
Sannai, Takai, Cordonnier, https://arxiv.org/abs/1903.01939v2



from Rdi to Rdi+1 defined by Zi(x) = ReLU(Wix), where Wi ∈ Rdi+1×di . In this case, di is
called the width of the i-th layer. The output of the deep neural networks is

Y (x) = ZH ◦ ZH−1 . . . Z2 ◦ Z1(x),

where H is called the depth of the deep neural network. We define the width of a deep neural
network as the maximum of the widths of all layers. Our models, which are generalization of
the models in [28], are defined by the invariant/equivariant property of Zi. Before defining the
invariant/equivariant models, we define the invariance/equivariance for functions.

Only two groups will be considered in this paper. The group Sn of permutations of n elements and
its subgroup Stabn(1) of the permutations fixing {1}, properly defined as follows:

Stabn(1) = Stab(1) = {σ ∈ Sn | σ · 1 = 1} .

Definition 2.1. Let G be a group and X and Y two sets. We assume that G acts on X (resp. Y ) by
g · x (resp. g ∗ y) for g ∈ G and x ∈ X (resp. y ∈ Y ) . We say that a map f : X → Y is

• G-invariant if f(g · x) = f(x) for any g ∈ G and any x ∈ X ,

• G-equivariant if f(g · x) = g ∗ f(x) for any g ∈ G and any x ∈ X .

When G = Sn and the actions are induced by permutation, we call G-invariant (resp. G-equivariant)
functions as permutation invariant (resp. permutation equivariant) functions.

We next consider an action of Sn on vector spaces over R, esspecially, each layers of deep neural
networks. We fix an action “·” of Sn on the set {1, 2, . . . , n}. Then, the left action “·” (we use same
symbol here) of Sn on Rn is induced by

σ · x = σ · (x1, x2, . . . , xn)
⊤ = (xσ−1·1, xσ−1·2, . . . , xσ−1·n)

⊤

for σ ∈ Sn and x = (x1, . . . , xn)⊤ ∈ Rn.

We define G-invariance and G-equivariance for deep neural networks. We can easily confirm that
the models in [28] satisfies these properties.

Definition 2.2. We say that a deep neural network is Sn-equivariant (resp. Sn-preinvariant) if there
are Sn-actions on each layer Rdi and the corresponding map Zi : Rdi → Rdi+1 is Sn-equivariant
(resp. Sn-invariant). We say that a deep neural network is Sn-invariant if there is a natural number
c ≤ H such that Sn-actions on each layer Rdi for 1 ≤ i ≤ c + 1 and the corresponding map
Zi : Rdi → Rdi+1 is Sn-equivariant for 1 ≤ i ≤ c− 1 and Zc : Rdc → Rdc+1 is Sn-preinvariant.

In this paper, we give three main theorems about invariant/equivariant networks. The first one is the
invariant version of universal approximation theorem.

Theorem 2.1 (Permutation invariant version of universal approximation theorem). Let K be a com-
pact set in Rn which is stable for the corresponing Sn action in Rn . Then, for any f : K → RN

which is continuous and permutation invariant and for any ϵ > 0, there is an Sn-invariant ReLU
neural network N such that its represented function RN satisfies ∥f − RN ∥∞ ≤ ϵ. Furthermore,
we can take N as either of the following:

• N has two hidden layers and the width is not bounded, or

• The width is of N is bounded above by n(n+ 2) and the depth is not bounded.

Diagram 1 illustrates the Sn-invariant ReLU neural network appeared in Theorem 2.1. [22] also
showed this theorem. However, we give the bound of the width and the depth. The proof of The-
orem 2.1 is constructive. Firstly, we use the Kolmogorov-Arnold representation theorem to give
a presentation f = ρ (

∑n
i=1 φ(xi)), where f is the objective function. Since φ(x) has only one

variable, we line up the copies of the network which approximates φ(x). Then, by combining Σ and
the network which approximates ρ, we obtain the network which approximates f . By the theorem
of [13], we obtain the bound of the width and the depth.

The second main theorem is the equivariant version.

Theorem 2.2 (Permutation equivariant version of universal approximation theorem). Let K be a
compact set in Rn. Then for any continuous function f : K → Rn which is permutation equivariant

4



Group Convolution Neural Network
[Cohen, Welling, https://arxiv.org/abs/1602.07576]

Group Equivariant Convolutional Networks

tion followed by a correlation is the same as a correlation
followed by a translation:

[[Ltf ] ⋆ ψ](x) =
∑

y

f(y − t)ψ(y − x)

=
∑

y

f(y)ψ(y + t− x)

=
∑

y

f(y)ψ(y − (x− t))

= [Lt[f ⋆ ψ]](x).

(8)

And so we say that “correlation is an equivariant map for
the translation group”, or that “correlation and translation
commute”. Using an analogous computation one can show
that also for the convolution, [Ltf ] ∗ ψ = Lt[f ∗ ψ].

Although convolutions are equivariant to translation, they
are not equivariant to other isometries of the sampling lat-
tice. For instance, as shown in the supplementary material,
rotating the image and then convolving with a fixed filter is
not the same as first convolving and then rotating the result:

[[Lrf ] ⋆ ψ](x) = Lr[f ⋆ [Lr−1ψ]](x) (9)

In words, this says that the correlation of a rotated image
Lrf with a filter ψ is the same as the rotation by r of the
original image f convolved with the inverse-rotated filter
Lr−1ψ. Hence, if an ordinary CNN learns rotated copies
of the same filter, the stack of feature maps is equivariant,
although individual feature maps are not.

6. Group Equivariant Networks
In this section we will define the three layers used in a G-
CNN (G-convolution, G-pooling, nonlinearity) and show
that each one commutes with G-transformations of the do-
main of the image.

6.1. G-Equivariant correlation

The correlation (eq. 7) is computed by shifting a filter and
then computing a dot product with the feature maps. By
replacing the shift by a more general transformation from
some group G, we get the G-correlation used in the first
layer of a G-CNN:

[f ⋆ ψ](g) =
∑

y∈Z2

∑

k

fk(y)ψk(g
−1y). (10)

Notice that both the input image f and the filter ψ are func-
tions of the plane Z2, but the feature map f ⋆ψ is a function
on the discrete groupG (which may contain translations as
a subgroup). Hence, for all layers after the first, the filters ψ
must also be functions on G, and the correlation operation
becomes

[f ⋆ ψ](g) =
∑

h∈G

∑

k

fk(h)ψk(g
−1h). (11)

The equivariance of this operation is derived in complete
analogy to eq. 8, now using the substitution h → uh:

[[Luf ] ⋆ ψ](g) =
∑

h∈G

∑

k

fk(u
−1h)ψ(g−1h)

=
∑

h∈G

∑

k

f(h)ψ(g−1uh)

=
∑

h∈G

∑

k

f(h)ψ((u−1g)−1h)

= [Lu[f ⋆ ψ]](g)

(12)

The equivariance of eq. 10 is derived similarly. Note that
although equivariance is expressed by the same formula
[Luf ] ⋆ ψ = Lu[f ⋆ ψ] for both first-layer G-correlation
(eq. 10) and full G-correlation (11), the meaning of the
operator Lu is different: for the first layer correlation, the
inputs f and ψ are functions on Z2, so Luf denotes the
transformation of such a function, while Lu[f ⋆ ψ] denotes
the transformation of the feature map, which is a function
on G. For the full G-correlation, both the inputs f and ψ
and the output f ⋆ ψ are functions on G.

Note that if G is not commutative, neither the G-
convolution nor the G-correlation is commutative. How-
ever, the feature maps ψ ⋆ f and f ⋆ ψ are related by the
involution (eq. 6):

f ⋆ ψ = (ψ ⋆ f)∗. (13)

Since the involution is invertible (it is its own inverse), the
information content of f⋆ψ and ψ⋆f is the same. However,
f ⋆ ψ is more efficient to compute when using the method
described in section 7, because transforming a small filter
is faster than transforming a large feature map.

It is customary to add a bias term to each feature map
in a convolution layer. This can be done for G-conv
layers as well, as long as there is only one bias per G-
feature map (instead of one bias per spatial feature plane
within a G-feature map). Similarly, batch normalization
(Ioffe & Szegedy, 2015) should be implemented with a sin-
gle scale and bias parameter per G-feature map in order
to preserve equivariance. The sum of two G-equivariant
feature maps is also G-equivariant, thus G-conv layers
can be used in highway networks and residual networks
(Srivastava et al., 2015; He et al., 2015).

6.2. Pointwise nonlinearities

Equation 12 shows that G-correlation preserves the trans-
formation properties of the previous layer. What about non-
linearities and pooling?

Recall that we think of feature maps as functions on G. In
this view, applying a nonlinearity ν : R → R to a feature
map amounts to function composition. We introduce the

Group Equivariant Convolutional Networks

operatorLg is a concrete instantiation of the transformation
operator Tg referenced in section 2, and one may verify that

LgLh = Lgh. (5)

If g represents a pure translation t = (u, v) ∈ Z2 then
g−1x simply means x − t. The inverse on g in equation 4
ensures that the function is shifted in the positive direction
when using a positive translation, and that Lg satisfies the
criterion for being a homomorphism (eq. 5) even for trans-
formations g and h that do not commute (i.e. gh ≠ hg).

As will be explained in section 6.1, feature maps in a G-
CNN are functions on the groupG, instead of functions on
the group Z2. For functions on G, the definition of Lg is
still valid if we simply replace x (an element of Z2) by h
(an element of G), and interpret g−1h as composition.

It is easy to mentally visualize a planar feature map f :
Z2 → R undergoing a transformation, but we are not used
to visualizing functions on groups. To visualize a feature
map or filter on p4, we plot the four patches associated with
the four pure rotations on a circle, as shown in figure 1
(left). Each pixel in this figure has a rotation coordinate
(the patch in which the pixel appears), and two translation
coordinates (the pixel position within the patch).
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Figure 1. A p4 feature map and its rotation by r.

When we apply the 90 degree rotation r to a function on
p4, each planar patch follows its red r-arrow (thus incre-
menting the rotation coordinate by 1 (mod 4)), and simul-
taneously undergoes a 90-degree rotation. The result of this
operation is shown on the right of figure 1. As we will see
in section 6, a p4 feature map in a p4-CNN undergoes ex-
actly this motion under rotation of the input image.

For p4m, we can make a similar plot, shown in figure 2.
A p4m function has 8 planar patches, each one associated
with a mirroring m and rotation r. Besides red rotation
arrows, the figure now includes small blue reflection lines
(which are undirected, since reflections are self-inverse).

Upon rotation of a p4m function, each patch again follows
its red r-arrows and undergoes a 90 degree rotation. Un-
der a mirroring, the patches connected by a blue line will
change places and undergo the mirroring transformation.
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Figure 2. A p4m feature map and its rotation by r.

This rich transformation structure arises from the group op-
eration of p4 or p4m, combined with equation 4 which de-
scribes the transformation of a function on a group.

Finally, we define the involution of a feature map, which
will appear in section 6.1 when we study the behavior of
the G-convolution, and which also appears in the gradient
of the G-convolution. We have:

f∗(g) = f(g−1) (6)

For Z2 feature maps the involution is just a point reflec-
tion, but for G-feature maps the meaning depends on the
structure of G. In all cases, f∗∗ = f .

5. Equivariance properties of CNNs
In this section we recall the definitions of the convolution
and correlation operations used in conventional CNNs, and
show that these operations are equivariant to translations
but not to other transformations such as rotation. This is
certainly well known and easy to see by mental visualiza-
tion, but deriving it explicitly will make it easier to follow
the derivation of group equivariance of the group convolu-
tion defined in the next section.

At each layer l, a regular convnet takes as input a stack of
feature maps f : Z2 → RKl

and convolves or correlates it
with a set ofK l+1 filters ψi : Z2 → RKl

:

[f ∗ ψi](x) =
∑

y∈Z2

Kl

∑

k=1

fk(y)ψ
i
k(x − y)

[f ⋆ ψi](x) =
∑

y∈Z2

Kl

∑

k=1

fk(y)ψ
i
k(y − x)

(7)

If one employs convolution (∗) in the forward pass, the cor-
relation (⋆) will appear in the backward pass when comput-
ing gradients, and vice versa. We will use the correlation in
the forward pass, and refer generically to both operations
as “convolution”.

Using the substitution y → y+ t, and leaving out the sum-
mation over feature maps for clarity, we see that a transla-
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Definition 2.3. Let X = {1, . . . ,M} be an index set of nodes in a layer. We say an Sn-action on
X is a union of permutations if X =

⊔
Xi, where each Xi has n elements and Sn acts on Xi by

permutation.

Theorem 2.3. Let N be a deep neural network of the invariant model consisting of the equivariant
part of depth d and width M and the preinvariant part of depth e and width N (resp. the equivariant
model of depth d and width M ). Assume that the action is a union of permutations on nodes in each
layers. Then, the number of free parameters in this model is bounded by (2dM2d/n2d) ·N2e (resp.

2dM2d/n2d).

Note that the number of free parameters in the usual model is M2d. Hence, this theorem implies
that the free parameters of the invariant/equivariant models are exponentially fewer than the ones
of the usual models.

3 Invariant case

In this section, we discuss the invariant case. An important result about the structures of invariant
functions is that these have exact representations as follows:

Theorem 3.1 ([28] Kolmogorov-Arnold’s representation theorem for permutation actions). Let K ⊂
Rn be a compact set. Then, any continuous Sn-invariant function f : K "−→ R can be represented
as

f(x1, . . . , xn) = ρ

(
n∑

i=1

φ(xi)

)

(1)

for some continuous function ρ : Rn+1 → R. Here, φ : R → Rn+1;x "→ (1, x, x2, . . . , xn)⊤.

By this theorem, we prove Theorem 2.1, i.e., an invariant version of universal approximation theo-
rem.
Proof of Theorem 2.1. We may assume N = 1. In fact, since we consider the L∞-norm, if all
components of ∥f − RN ∥ is bounded by ϵ, then ∥f − RN ∥∞ ≤ ϵ holds. By Theorem 3.1, we
have f(x1, . . . , xn) = ρ (

∑n
i=1 φ(xi)). Then, φ and Σ are concrete maps. Hence, we can write

them down by a feed forward network. We give Sn-actions on this network. The Sn-action on the
input layer is permutation. Then, since Σ is apparently an invariant linear function, it remains to
approximate φ and ρ. Since φ depends on a single variable, we can extend Sn-action on arbitrary
approximations. By [25], we can approximate φ and ρ by shallow networks. Hence, we have
deep neural network N which has two hidden layers and the width is not bounded. By [13], we
can respectively approximate each of φ and ρ by some neural networks whose width are bounded
by n + 2 and the depth is not bounded. Hence, we have deep neural network N whose width is
bounded by n(n+ 2) and the depth is not bounded. The detail of the proof is in Appendix B.

4 Equivariant case

In this section, we prove Theorem 2.2, namely, the equivariant version of the universal approxima-
tion theorem. More concretely, we construct an Sn-invariant deep neural network approximating
the given Sn-equivariant function. To achieve this, we divide the proof to four steps as follows:

1. By Proposition 4.1 proved below, we reduce the argument on Sn-equivariant map F to the
one of Stab(1)-invariant function f .

2. Modifying Theorem 3.1, we have a representation of Stab(1)-invariant function f .

3. Using the above representation, we have a Stab(1)-invariant deep neural net which approx-
imates f and construct a deep neural network approximating F .

4. We introduce a certain action of Sn on (Rn)n which appears the first hidden layer naturally
and show the Sn-equivariance between the input layer and the first hidden layer.

We first investigate step 1. We recall that, during this section, we only consider the action of Sn on
Rn induced from permutation σ · (x1, . . . , xn)⊤ = (xσ−1(1), . . . , xσ−1(n))

⊤. We define the action
of Stab(1) on Rn by regarding Stab(1) as a subgroup of Sn. Then, the following shows a relation
between Sn-equivariance and Stab(1)-invariance.
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from Rdi to Rdi+1 defined by Zi(x) = ReLU(Wix), where Wi ∈ Rdi+1×di . In this case, di is
called the width of the i-th layer. The output of the deep neural networks is

Y (x) = ZH ◦ ZH−1 . . . Z2 ◦ Z1(x),

where H is called the depth of the deep neural network. We define the width of a deep neural
network as the maximum of the widths of all layers. Our models, which are generalization of
the models in [28], are defined by the invariant/equivariant property of Zi. Before defining the
invariant/equivariant models, we define the invariance/equivariance for functions.

Only two groups will be considered in this paper. The group Sn of permutations of n elements and
its subgroup Stabn(1) of the permutations fixing {1}, properly defined as follows:

Stabn(1) = Stab(1) = {σ ∈ Sn | σ · 1 = 1} .

Definition 2.1. Let G be a group and X and Y two sets. We assume that G acts on X (resp. Y ) by
g · x (resp. g ∗ y) for g ∈ G and x ∈ X (resp. y ∈ Y ) . We say that a map f : X → Y is

• G-invariant if f(g · x) = f(x) for any g ∈ G and any x ∈ X ,

• G-equivariant if f(g · x) = g ∗ f(x) for any g ∈ G and any x ∈ X .

When G = Sn and the actions are induced by permutation, we call G-invariant (resp. G-equivariant)
functions as permutation invariant (resp. permutation equivariant) functions.

We next consider an action of Sn on vector spaces over R, esspecially, each layers of deep neural
networks. We fix an action “·” of Sn on the set {1, 2, . . . , n}. Then, the left action “·” (we use same
symbol here) of Sn on Rn is induced by

σ · x = σ · (x1, x2, . . . , xn)
⊤ = (xσ−1·1, xσ−1·2, . . . , xσ−1·n)

⊤

for σ ∈ Sn and x = (x1, . . . , xn)⊤ ∈ Rn.

We define G-invariance and G-equivariance for deep neural networks. We can easily confirm that
the models in [28] satisfies these properties.

Definition 2.2. We say that a deep neural network is Sn-equivariant (resp. Sn-preinvariant) if there
are Sn-actions on each layer Rdi and the corresponding map Zi : Rdi → Rdi+1 is Sn-equivariant
(resp. Sn-invariant). We say that a deep neural network is Sn-invariant if there is a natural number
c ≤ H such that Sn-actions on each layer Rdi for 1 ≤ i ≤ c + 1 and the corresponding map
Zi : Rdi → Rdi+1 is Sn-equivariant for 1 ≤ i ≤ c− 1 and Zc : Rdc → Rdc+1 is Sn-preinvariant.

In this paper, we give three main theorems about invariant/equivariant networks. The first one is the
invariant version of universal approximation theorem.

Theorem 2.1 (Permutation invariant version of universal approximation theorem). Let K be a com-
pact set in Rn which is stable for the corresponing Sn action in Rn . Then, for any f : K → RN

which is continuous and permutation invariant and for any ϵ > 0, there is an Sn-invariant ReLU
neural network N such that its represented function RN satisfies ∥f − RN ∥∞ ≤ ϵ. Furthermore,
we can take N as either of the following:

• N has two hidden layers and the width is not bounded, or

• The width is of N is bounded above by n(n+ 2) and the depth is not bounded.

Diagram 1 illustrates the Sn-invariant ReLU neural network appeared in Theorem 2.1. [22] also
showed this theorem. However, we give the bound of the width and the depth. The proof of The-
orem 2.1 is constructive. Firstly, we use the Kolmogorov-Arnold representation theorem to give
a presentation f = ρ (

∑n
i=1 φ(xi)), where f is the objective function. Since φ(x) has only one

variable, we line up the copies of the network which approximates φ(x). Then, by combining Σ and
the network which approximates ρ, we obtain the network which approximates f . By the theorem
of [13], we obtain the bound of the width and the depth.

The second main theorem is the equivariant version.

Theorem 2.2 (Permutation equivariant version of universal approximation theorem). Let K be a
compact set in Rn. Then for any continuous function f : K → Rn which is permutation equivariant
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Diagram 1: A neural network approximating Sn-invariant function f . In blue: the inputs, in red: the
output, in green: ρ and φ who have to be learned.
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Diagram 2: A neural network approximating Sn-equivariant map F

and for any ϵ > 0, there is an Sn-equivariant ReLU neural network N such that its represented
function RN satisfies ∥f −RN ∥∞ ≤ ϵ. Furthermore, we can take N as either of the following:

• N has two hidden layers and the width is not bounded, or

• The width is of N is bounded above by n3 and the depth is not bounded.

Although invariant versions are proved by [22] and [27], the equivariant version of universal approxi-
mation theorem for Sn is first in the literature. Our strategy for the proof is the following: At first, we
establish the correspondence between Stab(1)-invariant functions and Sn-equivariant functions. By
this correspondence, we take Stab(1)-invariant function f corresponding to the objective function
F . By Theorem 2.1, we can approximate f by a Stab(1)-invariant network N . Using N , we con-
struct the Sn-equivariant network which approximates F . Diagram 2 illustrates the Sn-equivariant
ReLU neural network appeared in Theorem 2.2.
We have two universal approximation theorems. Hence, if the free parameters of the invari-
ant/equivariant models are fewer than the ones of the usual models, we have a guarantee for using
the invariant/equivariant models. The following definition illustrates the swapping of nodes.
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ρ
∑...

...
...

φxn

φx2

idx1

id

Diagram 3: A neural network approximating the Stab(1)-invariant function f

Proposition 4.1. A map F : Rn → Rn is Sn-equivariant if and only if there is a Stab(1)-invariant

function f : Rn → R satisfying F = (f, f ◦ (1 2), . . . , f ◦ (1 n))⊤. Here, (1 i) ∈ Sn is the
transposition between 1 and i.

The proof of this proposition is based on the coset decomposition of Sn by Stab(1) as Sn =⊔n
i=1 Stab(1)(1 i) and the fact that transposition (1 i), i = 1, . . . , n generate Sn. Using these

facts and some calculation, it is not hard to show the equivalence. The detail of the proof is in
Appendix C.

Next, we consider step 2. The stabilizer subgroup Stabn(1) is isomorphic to Sn−1 as a group by
Lemma. Hence, we can regard the Stab(1)-invariant function f : Rn → R as an Sn−1-invariant
function. This point of view allows us to apply Theorem 3.1 to f . Hence, we have the following
representation theorem of Stab(1)-invariant functions as a corollary of Theorem 3.1.
Corollary 4.1 (Representation of Stab(1)-invariant function). Let K ⊂ Rn be a compact set, let
f : K −→ R be a continuous and Stab(1)-invariant function. Then, f(x) can be represented as

f(x) = f(x1, . . . , xn) = ρ

(

x1,
n∑

i=2

φ(xi)

)

,

for some continuous function ρ : Rn+1 −→ R. Here, φ : R → Rn is similar as in Theorem 3.1.

By this corollary, we can represent the Stab(1)-invariant function f : Rn &−→ R as f = ρ ◦ L ◦ Φ,
where Φ : Rn → R× (Rn)n−1 and L : R× (Rn)n−1 → R× Rn are

Φ(x1, . . . , xn) = (x1,φ(x2), . . . ,φ(xn)), L(x, (y1, . . . ,yn−1)) =

(

x,
n−1∑

i=1

yi

)

.

Then, we consider step 3, namely, the existence of Stab(1)-invariant deep neural network approx-
imating the function f . After that, using this approximator, we construct a deep neural network
approximating Sn-equivariant function F . By a slight modification of the invariant version of The-
orem 2.1 for Stab(1)-invariant case, there exists a sequence of deep neural networks {Am}m (resp.
{Bm}m) which converges to Φ (resp. ρ) uniformly. Then, the sequence of deep neural networks
{Bm ◦ L ◦Am}m converges to f = ρ ◦ L ◦ Φ uniformly.

Now, f can be approached by the following deep neural network by replacing ρ and Φ by universal
approximators as Diagram 3. We remark that the left part (the part of before taking sum) of this
deep neural network is naturally equivariant for the action of Stab(1). For an Sn-equivariant map
F : Rn → Rn with the natural action, by Proposition 4.1, there is a unique Stab(1)-invariant
function f such that F (x)i = (f ◦ (1 i))(x). Here, F (x) = (F (x)1, . . . , F (x)n)⊤ and we regard
any element of Sn as a map from Rn to Rn. By the argument in this section, we can approximate
f by the previous deep neural network {Bm ◦ L ◦ Am}m. Substituting Bm ◦ L ◦ Am for f , we
construct a deep neural network approximating F as Diagram 2.

The represented function of this neural network of Fi is Bm ◦ L ◦ Am ◦ (1 i). The map F splits
into two parts, the part of transpositions and part of (f, f, . . . , f)⊤. On the deep neural network
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and for any ϵ > 0, there is an Sn-equivariant ReLU neural network N such that its represented
function RN satisfies ∥f −RN ∥∞ ≤ ϵ. Furthermore, we can take N as either of the following:

• N has two hidden layers and the width is not bounded, or

• The width is of N is bounded above by n3 and the depth is not bounded.

Although invariant versions are proved by [22] and [27], the equivariant version of universal approxi-
mation theorem for Sn is first in the literature. Our strategy for the proof is the following: At first, we
establish the correspondence between Stab(1)-invariant functions and Sn-equivariant functions. By
this correspondence, we take Stab(1)-invariant function f corresponding to the objective function
F . By Theorem 2.1, we can approximate f by a Stab(1)-invariant network N . Using N , we con-
struct the Sn-equivariant network which approximates F . Diagram 2 illustrates the Sn-equivariant
ReLU neural network appeared in Theorem 2.2.
We have two universal approximation theorems. Hence, if the free parameters of the invari-
ant/equivariant models are fewer than the ones of the usual models, we have a guarantee for using
the invariant/equivariant models. The following definition illustrates the swapping of nodes.
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