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Some Theories are limited but help:

» Approximation Theory and Harmonic Analysis : What functions are represented
well by deep neural networks, without suffering the curse of dimensionality and
better than shallow networks?

» Sparse (local), hierarchical (multiscale), compositional functions avoid the curse
dimensionality

» Group (translation, rotational, scaling, deformation) invariances achieved as depth
grows

» Generalization: How can deep learning generalize well without overfitting the
noise?

®» Double descent curve with overparametrized models
» |mplicit regularization of SGD: Max-Margin classifier
» “Benign overfitting”<e

» Optimization: What is the landscape of the empirical risk and how to optimize it
efficiently?

» Wide networks may have simple landscape for GD/SGD algorithms ...




Empirical Risk vs. Population Risk

» Consider the empirical risk minimization under i.i.d. (independent and
identically distributed) samples

Ra(0) = Enl(y, £(2:0)) = > i, f(25:6)) + R 0)

1=1

» The population risk with respect to unknown distribution

R(0) = E () ~pl(y, f(2:0))




Optimization vs. Generalization

» Fundamental Theorem of Machine Learning (for 0-1 misclassification loss,
called 'errors’ below)
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sup |[R(0) — R, (0)] < Complexity(©)
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e.g. Rademacher complexity

= How to make training loss/error smallg — Optimization issue

= How to make generalization gap smallg — Model Complexity issue



Uniform Convergence: Another View

» For 0* € argmingcg R(6) and 0, € arg mingee R, (6),
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e.g. Rademacher complexity



Example: regression and square |oss

> Given an estimate f and a set of predictors X, we can predict Y using
Y = F(X),
> Assume for a moment that both  and X are fixed. In regression setting,

E(Y — Y)* = E[f(X) 4+ ¢ — F(X)]°

=[F(X) = F(X)*+ Var(e) (2)
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where E(Y — Y)? represents the expected squared error between the
predicted and actual value of Y, and Var(e) represents the variance

associated with the error term €. An optimal estimate is to minimize the
reducible error.



Bias-Variance Decomposition

» Let f(X) be the true function which we aim at estimating
from a training data set D.

> Let f(X; D) be the estimated function from the training data
set D.

» Take the expectation with respect to D,

Ep [f(X) — (X D)}2
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Bias-Variance Tradeoff

under-fitting over-fitting
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(a) U-shaped “bias-variance” risk curve




Why big models in NN generalize welle
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k=10
What happens when | turn off the regularizers?

Train Test
Model parameters p/n loss  error
CudaConvNet 145,578 2.9 0 23%
CudaConvNet 145,578 2.9 0.34 | 8%
(with regularization)
Microlnception 1,649,402 33 0 | 4%
ResNet 2,401,440 48 0 1 3%

Chiyuan Zhang et al. 2016




The Bias-Variance Tradeoff?¢
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Increasing # parameters
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Figure: Experiments on MNIST. Left: [Belkin, Hsu, Ma, Mandal, 2018|. Right:
[Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart, 2018].

# parameters / # samples

Similar phenomenon appeared in the literature [LeCun, Kanter, and Solla, 1991],
[Krogh and Hertz, 1992|, [Opper and Kinzel, 1995|, [Neyshabur, Tomioka, Srebro,
2014], [Advani and Saxe, 2017].




“Double Descent”
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(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Figure: A cartoon by [Belkin, Hsu, Ma, Mandal, 2018|.

v' Peak at the interpolation threshold.
v Monotone decreasing in the overparameterized regime.

v' Global minimum when the number of parameters is infinity.




Complementary rather than
Contradiction

U-shaped curve J

Test error vs model complexity that tightly controls generalization.

Examples: ¢5 norm in linear model, “k” in k nearest-neighbors.

Test error vs number of parameters.

Double-descent J

Examples: # parameters in NN.

In NN, # parameters # model complexity that tightly controls generalization.)

[Bartlett, 1997], [Bartlett and Mendelson, 2002]



Let’s go to two talks

» Prof. Misha Belkin (OSU/UCSD)

» From Classical Statistics to Modern Machine Learning at Simons Institute at
Berkeley

= How interpolation models do not overfit...

» Prof. Song Mei (UC Berkeley)

» Generalization of linearized neural networks: staircase decay and double
descent, at HKUST

» How simple linearized single-hidden-layer models help understand...




Thank you!




