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Some Theories are limited but help:
´ Approximation Theory and Harmonic Analysis : What functions are represented 

well by deep neural networks, without suffering the curse of dimensionality and 
better than shallow networks? 
´ Sparse (local), hierarchical (multiscale), compositional functions avoid the curse 

dimensionality

´ Group (translation, rotational, scaling, deformation) invariances achieved as depth 
grows 

´ Generalization: How can deep learning generalize well without overfitting the 
noise? 
´ Double descent curve with overparametrized models

´ Implicit regularization of SGD: Max-Margin classifier

´ “Benign overfitting”?

´ Optimization: What is the landscape of the empirical risk and how to optimize it 
efficiently?
´ Wide networks may have simple landscape for GD/SGD algorithms …



Empirical Risk vs. Population Risk

´ Consider the empirical risk minimization under i.i.d. (independent and
identically distributed) samples

´ The population risk with respect to unknown distribution

Generalization error

I (xi, yi)ni=1 are i.i.d. (independent and identically distributed)
samples

I Empirical risk:

R̂n(✓) = Ên`(y, f(x; ✓)) :=
1

n

nX

i=1

`(yi, f(xi; ✓)) +Rn(✓)

where `(y, ŷ) is the loss function and Rn is a regularization function

I Population (true) risk:

R(✓) = E(x,y)`(y, f(x; ✓))

I
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R̂n(✓) = Ên`(y, f(x; ✓)) :=
1

n

nX

i=1

`(yi, f(xi; ✓)) +Rn(✓)
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Optimization vs. Generalization

´ Fundamental Theorem of Machine Learning (for 0-1 misclassification loss, 
called ’errors’ below)

´ How to make training loss/error small? – Optimization issue

´ How to make generalization gap small? – Model Complexity issue
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R(✓)|{z}
test/validation/generalization loss

= R̂n(✓)| {z }
training loss

+ R(✓)� R̂n(✓)| {z }
generalization gap

Another View: Uniform Convergence

I For ✓⇤ = argmin✓ R(✓) and b✓n = argmin R̂n(✓),

R(b✓n)�R(✓⇤)| {z }
excess risk

= R(b✓n)� R̂n(b✓n)| {z }
A

+ . . .

+(R̂n(b✓n)� R̂n(✓
⇤))| {z }

 0

+ . . .

+(R̂n(✓
⇤)�R(✓⇤))| {z }

B

I To make both A and B small,

sup
✓2⇥

|R(✓)� R̂n(✓)|  Complexity(⇥)

e.g. Rademacher complexity
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+ . . .
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Example: regression and square lossExpected Prediction Error

I Given an estimate f̂ and a set of predictors X , we can predict Y using

Ŷ = f̂ (X ),

I Assume for a moment that both f̂ and X are fixed. In regression setting,

E(Y � Ŷ )
2
= E[f (X ) + ✏ � f̂ (X )]

2

= [f (X )� f̂ (X )]
2

| {z }
Reducible

+ Var(✏)| {z }
Irreducible

, (2)

where E(Y � Ŷ )
2
represents the expected squared error between the

predicted and actual value of Y , and Var(✏) represents the variance

associated with the error term ✏. An optimal estimate is to minimize the

reducible error.
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Bias-Variance Decomposition
The Bias-Variance Trade-O↵

I Let f (X ) be the true function which we aim at estimating
from a training data set D.

I Let f̂ (X ;D) be the estimated function from the training data
set D.

I Fisher’s view: data set D is a random selection from the set
of all possible measurements which form the true distribution!

I Expected prediction error

min
f̂

ED

h
f (X )� f̂ (X ;D)

i2
, (3)

where randomness caused by random selection has been
taken into account.
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I Add and subtract ED(f̂ (X ;D)) inside the braces, then expand,

h
f (X )� f̂ (X ;D)

i2

=
h
f (X )� ED(f̂ (X ;D)) + ED(f̂ (X ;D))� f̂ (X ;D)

i2

=
h
f (X )� ED(f̂ (X ;D))

i2
+

h
ED(f̂ (X ;D))� f̂ (X ;D)

i2

+ 2
h
f (X )� ED[f̂ (X ;D)]

i h
ED[f̂ (X ;D)]� f̂ (X ;D)

i
.

I Take the expectation with respect to D,

ED

h
f (X )� f̂ (X ;D)

i2

=
h
f (X )� ED(f̂ (X ;D))

i2

| {z }
Bias2

+ED

h
ED(f̂ (X ;D))� f̂ (X ;D)

i2�

| {z }
Variance
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Bias-Variance TradeoffU-shaped curve

[Belkin, Hsu, Ma, Mandal, 2018]



Why big models in NN generalize well?
n=50,000
d=3,072
k=10

CIFAR10

Model parameters p/n
Train 
loss

Test 
error

CudaConvNet 145,578 2.9 0 23%

CudaConvNet
(with regularization)

145,578 2.9 0.34 18%

MicroInception 1,649,402 33 0 14%

ResNet 2,401,440 48 0 13%

What happens when I turn off the regularizers?

Chiyuan Zhang et al. 2016



The Bias-Variance Tradeoff?

Deep  
models

Models where p>20n are common
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Figure: Experiments on MNIST. Left: [Belkin, Hsu, Ma, Mandal, 2018]. Right:
[Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart, 2018].

Similar phenomenon appeared in the literature [LeCun, Kanter, and Solla, 1991],
[Krogh and Hertz, 1992], [Opper and Kinzel, 1995], [Neyshabur, Tomioka, Srebro,
2014], [Advani and Saxe, 2017].



“Double Descent”Double descent

Figure: A cartoon by [Belkin, Hsu, Ma, Mandal, 2018].

X Peak at the interpolation threshold.
X Monotone decreasing in the overparameterized regime.
X Global minimum when the number of parameters is infinity.



Complementary rather than 
Contradiction
Complementary instead of contradictory

U-shaped curve
Test error vs model complexity that tightly controls generalization.

Examples: norm in linear model, “ ” in nearest-neighbors.

Double-descent
Test error vs number of parameters.

Examples: parameters in NN.

In NN, parameters model complexity that tightly controls generalization.

[Bartlett, 1997], [Bartlett and Mendelson, 2002]



Let’s go to two talks

´ Prof. Misha Belkin (OSU/UCSD)
´ From Classical Statistics to Modern Machine Learning at Simons Institute at

Berkeley

´ How interpolation models do not overfit…

´ Prof. Song Mei (UC Berkeley)
´ Generalization of linearized neural networks: staircase decay and double 

descent, at HKUST

´ How simple linearized single-hidden-layer models help understand…



Thank you!


