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Outline

» Why mathematical theories of Deep Learning?

» The tsunami of deep learning in recent years...

» What Theories Do We Have or Need?
» Harmonic Analysis: what are optimal representation of functions?
» Approximation Theory: when deep networks are better than shallow ones?

» Opftimization: what are the landscapes of risk and how to efficiently find a good
opftimum?

» Statistics: how deep net models can generalize welle



Reaching Human Performance Level

May 11th, 1997

Computer won world champion of chess
{(Deep Blue) {Garry Kasparov)

I NM“’. T ————e < S . VUV e s ———— e e m e
o 3000 F T
£
% 2,000
S 1,000

0/
. — AlphaGo Zero 40 blocks
Deep Blue in 1997 1,000, - AlphaGo Master
--- AlphaGo Lee
-2,000
0 5 10 15 20 25 30 35 40

Days

AlphaGo "ZERO?” D Silver et al. Nature 550, 354—359 (2017) doi:10.1038/nature24270



ImageNet Dataset

122 labeled images

841 classes
@ Labeling required more than a year of human effort via

,197,

@ 14
o 21

Amazon Mechanical Turk

IMAGENET




ImageNet Top 5 classification error

@ ImageNet (subset):
e 1.2 million training images
e 100,000 test images
e 1000 classes

@ ImageNet large-scale visual recognition Challenge

Error Rate in Image Classification(%)
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source: https://www.linkedin.com/pulse/must-read-path-breaking-papers-image-classification-muktabh-mayank



rowdcomputing:
researchers raising the competition record




Depth as function of year
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Growth of Deep Learning

Google Trends Compare
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New Moore's Laws

CS231n attfendance NIPS registrations

. : - Alex Lebrun
',.}' Andrej Karpathy° ‘/ Follow \) v z @Ixbrun v

@karpathy

Deep learning hype in one picture

Came to visit first class of @cs231n at (NIPS conference registrations, 2002 through

Stanford. 2015: 150 students, 2016: 350, this 2017) #nips2017
year: 750. #aiinterestsingularity A

Registration Timeline - 2017
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everyone on Earth will be enrolled :-)



"We're at the beginning of a new day...

This is the beginning of the Al revolution.”
— Jensen Huang, GTC Taiwan 2017
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Some Cold Water: Tesla Autopilot
Misclassifies Truck as Billboard

‘hu (\ INVESTIGATION FOCUSED ON TESLA AUTOPILOT Iobc an"
S PN NEWS

- - - -

. I R Y] 83°
Problem: Why? How can you trust a
blackbox?




Deep Learning may be fragile in
generalization against noise!

+.007 x
. T _|_
r sign(VJ (6,2, y)) esign(V,J(0,z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

[Goodfellow et al., 2014]

@ Small but malicious perturbations can result in severe
misclassification

@ Malicious examples generalize across different
architectures

@ What is source of instability?

@ Can we robustify network?



Kaggle survey: Top Data Science Methods

https://www.kaggle.com/surveys/2017

Academic Industry

What data science methods are used at work? What data science methods are used at work?
Logistic regression is the most commonly reported data science method used at Logistic regression is the most commonly reported data science method used at
work for all industries except Military and Security where Neural Networks are used work for all industries except Military and Security where Neural Networks are used
slightly more frequently. slightly more frequently.
Company Size #) [ Academic %) ( Job Title B Company Size #]( Industry +)(Job Title B
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1,201 responses 7,301 responses

@ View code in Kaggle Kernels @ View code in Kaggle Kernels



What type of data is used at work?
https://www.kaggle.com/surveys/2017

Academic Industry

What type of data is used at work?

Relational data is the most commonly reported type of data used at work for all
industries except for Academia and the Military and Security industry where text

What type of data is used at work?

Relational data is the most commonly reported type of data used at work for all

industries except for Academia and the Military and Security industry where text

data’s used more. data’s used more.

Company Size ¥

Academic ¥ )| Job Title v Company Size 7| Industry ¥ /| Job Title +
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Relational data Text data
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Other Other
Video data Video data - 5.1%

1,277 responses 8,024 responses



What's wrong with deep learning?

Ali Rahimi NIPS'17: Machine (deep) Learning has become alchemy.
https://www.youtube.com/watchev=ORHFOnaEzPc

Yann LeCun CVPR'15, invited talk: What's wrong with deep learning?
ne important piece: missing some theory!

http://techtalks.tv/talks/whats-wrong-with-deep-learning/6 1639/




Perceptron: single-layer

@ Invented by Frank Rosenblatt (1957)
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Locality or Sparsity of Computation

Minsky and Papert, 1969
Perceptron can’'t do XOR classification Expanded Edition
Perceptron needs infinite global

information to compute connectivity

Locality or Sparsity is important:
Locality in time?
Locality in space?

Perceptrons

Marvin I.. Minsky
Seymour A. Papert




Multilayer Perceptrons (MLP) and
Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)
Learning representations by back-propagating
errors, Nature, 323(9): 533-536

BP algorithms as stochastic gradient descent
algorithms (Robbins—-Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

MLP classifies XOR, but the global hurdle on
topology (connectivity) computation still exists

NATURE VOL 323 9 OCTOBER 1986

LETTERSTONATURE =

Learning representations
by back-propagating errors

David E. Rumelhart¥, Geoffrey E. Hintont
& Rouald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA
t Depantment of Computer Science, Camegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the dilference between the actual output vector of the
net and the desired output vector. As 2 result of the weight
adjustments, internal *hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes hack-propagation from earlier, simpler methods such as
the perceptron-convergence procedure’.

There have been many attempts to design self-organizing
neural networks. The aim is to powerful synaptic
modifcation fule that will allow an arbirarily connected nearal
network to develop an internal structure that is appropriate for
a pasticular task domain. The task is specified by giving the
desired state vector of the output units for each state vector of
the input units. If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to proressively reduce the difference between the actual and
desised output vectors®. Learning becomes more interesting but

o whom correspondence should be addresid

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achicve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations.

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in parallel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined.

“Thie total input, x;, to unit ] is a linear function of the outputs,
i, of the units that afe connecied to j and of the welghlsb_w

on these connections

=Ly Y]

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent (o a threshold of the
opposite sign. It can be treated just like the othier weights.

A unit has a real-valued outpy which is a non-linear

function of its total input

2)



Convolutional Neural Networks: shift
invariances and locality

@ Can be traced to Neocognitron of Kunihiko Fukushima
(1979)
@ Yann LeCun combined convolutional neural networks with
back propagation (1989)
/ @ Imposes shift invariance and locality on the weights
@ Forward pass remains similar
@ Backpropagation slightly changes — need to sum over the
gradients from all spatial positions

Biol. Cybernetics 36, 193-202 (1980)

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unatfected by Shift in Position

Kunihiko Fukushima
NHK Broadcasting Science Research Laboratories, Kinuta, Sctagaya, Tokyo, Japan
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MNIST Dataset Test Error
LeCun et al. 1998

Linear
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Pairwise

K-NN Euclidean
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Around the year of 2012...

Speech Recognition: TIMIT

Error
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TIMIT Speech Recognition Dataset

Computer Vision: ImageNet

ImageNet
Large-Scale Visual Recognition
FISHER- svM Challenge

22.5

Top-5 Error 15

7.5

0
2010 2011 2012 2013 2014 2015

Deep Convolutional Neural Nets



AlexNet (2012)

@ 8 layers: first 5 convolutional, rest fully connected

@ RelLU nonlinearity

@ Local response normalization

@ Max-pooling
@ Dropout

Max
pooling

128

g . 3 LN e
o192 192 128 oas \ / 204 \dense
13 13 \ | \i3
Ei;a 3]--~-13;a. ’ 13 dense | |dense
1000
192 192 128 Max L |
Max pooling 2048 2048
pooling

Source: [Krizhevsky et al., 2012]



VGG (2014) [Simonyan-Zisserman'14]

@ Deeper than AlexNet: 11-19 layers versus 8

@ No local response normalization

@ Number of filters multiplied by two every few layers
o

o

Spatial extent of filters 3 x 3 in all layers

Instead of 7 x 7 filters, use three layers of 3 x 3 filters
e Gain intermediate nonlinearity
e Impose a regularization on the 7 x 7 filters

224 % 2243 224 224 2 6d

112 x 128

o G| 5 266

/ 28 % 28 % 512 THT %512
' ;[ X LIxBI2 | 31 ca008 11 1000

S convolution+ReLU
1 max pooling
= fully connected4+HRel.U
softmax

Source: https://blog.heuritech.com/2016/02/29/



ResNet (2015) [HGRS-15]

VGG-19 34-layer plain

@ Solves problem by adding = % T
skip connections B
@ Very deep: 152 layers ==

@ No dropout
@ Siride
@ Batch normalization

i

| (E] (B] |E
U‘E‘%’i

i

b1

weight layer =
relu
Y
weight layer

Source: Deep Residual Learning for Image Recognition



Visualizing Deep Neural Networks

@ Filters in first layer of CNN are easy to visualize, while
deeper ones are harder

@ Activation maximization seeks input image maximizing
output of the i-th neuron in the network

@ Objective
gj* = arg min R(CE) - <(D(CU), 67;>

T
@ ¢; Is indicator vector
@ R(x) is simple natural image prior



Visualizing VGG

@ Gabor-like images in first layer
@ More sophisticated structures in the rest

[Mahendran and Vedaldi, 2016]



Visual Neuroscience: Hubel/Wiesel, ...

Electrical signal
from brain

Recording electrode —|

* Consistent

V1 orientation maps

* Continuous maps

of orientation
preference:
“pinwheels”

preference though
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architecture
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Olshausen and Field 1996

Experimental Neuroscience uncovered the

> ... neural architecture of Retina/LGN/V1/V2/V3/ etc
> ... existence of neurons with weights and activation functions

(simple cells)

> ... pooling neurons (complex cells)
All these features are somehow present in today’s sucessful Deep

Learning systems

Neuroscience

Deep Network

Simple cells
Complex celle
Grandmother cells

First layer
Pooling Layer
Last layer

Theorists Olshausen and Field (Nature, 1996) demonstrated that
receptive fields learned from image patches




First layers learned ...

Efficient coding of natural images: Olshausen and Field, 1996

natural scene visual input image basis functions
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before after
learning learning

Network weights are adapted to maximize coding efficiency:
minimizes redundancy and maximizes the independence of the outputs



Transter Learninge

Deep Neural Network

~

L

1

[ Feature representation}:D[ Classification]

S

Filters learned in first layers of a network are transferable
from one task to another

When solving another problem, no need to retrain the
lower layers, just fine tune upper ones

Is this simply due to the large amount of images in
ImageNet?

Does solving many classification problems simultaneously
result in features that are more easily transferable?

Does this imply filters can be learned in unsupervised
manner?

Can we characterize filters mathematically?



Some Open Theoretical Problems

» Harmonic Analysis: What are the optimal (transferrable)
representations of functions as input signals (sounds, images, ...)¢

» Approximation Theory: When and why are deep networks better than
shallow networks?

» Optimization: What is the landscape of the empirical risk and how to
minimize it efficiently¢

» Statistics: How can deep learning generalize well without overfitting
the noise?



Harmonic Analysis

Harmonic analysis: optimal representation of input signals
Wavelets are optimal sparse representations for certain class of images

Stephane Mallat: Deep Scattering Transform — translational, small deformational,
rotational and scaling invariances; the deeper is the network, the larger are the
invariances

Mathew Hirn @IAS-HKUST talked about scattering net for energy functions on 3-D
densities (images)
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Sparse Representations: Wavelet convolutions
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Compressed Sensing
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Matrix Notation
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Compressed Sensing

Given a signal, we would like to find its sparse representation

min |||y s.t. X = DT

%mm |IT||; st. X =DT
approximation % T
> SB{D X}

-




From Soft Thresholding fo RelLU

Soft Thresholding RelLU: Sof.’r Nonnegative
Threshoding
r gX I gx




Convolutional Neural Network

[

Convolutional Neural Network

r 1 [ A
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Incoherence...
Papyan, Sulam, and Elad 2016
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Approximation Theory

» Class prediction rule can be viewed as function f(x) of
high-dimensional argument

» Curse of Dimensionality

» Traditional theoretical obstacle to high-dimensional
approximation

» “Functions of high dimensional x can wiggle in too many
dimensions to be learned from finite datasets’



Approximation Theory

» Ridge Functions p(u'x) mathematically same as deep learning
first layer outputs.

» Sums of Ridge Functions mathematically same as input to
second layer.

» Approximation by Sums of Ridge Functions f ~ ). p;j(uix)
studied for decades

» Theorists (1990's-Today): certain functions f(x)
approximated by ridge sums with no curse of dimensionalty



(Sparse) Compositional Functions

» Compositional functions f(x) =

h(gl(X,'l,17 "'7Xi1,k)7g2(Xi2,17 e 7Xi2,k)7 e ,gg(X,'e,17 . e 7Xi£,k)) are
functions of small number of functions; £, kK < d.

» VGG Nets are deep compositions

» Approximation by Compositional Functions studied for
decades

» Theorists (1990's-Today): certain functions f(x) avoid curse
of dimensionalty using multilayer compositions

» T. Poggio (MIT) and Hrushikesh Mhaskar (Caltech) have
several papers analyzing deepnets as deep compositions.



Mhaskar-Poggio-Liao’16

f(x1 s Xy 7°'°ax8) = 83(821(811(x1 ,xz)ag12(x3,x4 ))gzz(gn(xs ’x6)>812(x7 »Xg )

X1 Xy X3 X4 Xg Xg X7 Xg

Theorem (informal statement)

Suppose that a function of d variables is hierarchically, locally, compositional . Both
shallow and deep network can approximate f equally well. The number of parameters of
the shallow network depends exponentially on d as O(e™) with the dimension
whereas for the deep network dance is O(de™)



IAS-HKUST workshop talks

» 9 Jan 2018, Tuesday:
= Ding-Xuan ZHOU Approximation Analysis of Distributed Learning and Deep CNNs

» |0 Jan 2018, Wednesday:

= Philipp Grohs Approximation Results for Deep Neural Networks

» |] Jan 2018, Thursday:

» Gitta Kutyniok Optimal Approximation with Sparsely Connected Deep Neural
Networks

= Philipp Petersen Optimal Approximation of Classifier Functions by Deep RelLU
Networks



