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Outline

´ Why mathematical theories of Deep Learning?
´ The tsunami of deep learning in recent years…

´ What Theories Do We Have or Need?
´ Harmonic Analysis: what are optimal representation of functions?

´ Approximation Theory: when deep networks are better than shallow ones?

´ Optimization: what are the landscapes of risk and how to efficiently find a good 
optimum?  

´ Statistics: how deep net models can generalize well? 
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Deep Blue in 1997



ImageNet DatasetBackground Info

ImageNet dataset

14,197,122 labeled images
21,841 classes
Labeling required more than a year of human effort via
Amazon Mechanical Turk
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ImageNet Top 5 classification errorBackground Info

Instance of Common Task Framework, 1

ImageNet (subset):
1.2 million training images
100,000 test images
1000 classes

ImageNet large-scale visual recognition Challenge

source: https://www.linkedin.com/pulse/must-read-path-breaking-papers-image-classification-muktabh-mayank
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Crowdcomputing: 
researchers raising the competition record

The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

Mobile is eating the world
Mobile Drives IT Revolution
IT Revolution enables massive computation
Gaming Revolution Accelerates Computing Gains
Exhaustive Trial and Error is now possible
Emergence of the Common Task Framework

Graduate Students Preparing for NIPS 2017

Sebastiao Salgado, Work
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Depth as function of yearBackground Info

Depth as function of year

[He et al., 2016]
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Growth of Deep Learning

The Deep Learning Tsunami
Why now?
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Course Structure
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Human Impact
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New Moore’s Laws

CS231n attendance NIPS registrations
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"We’re at the beginning of a new day… 
This is the beginning of the AI revolution.” 
 — Jensen Huang, GTC Taiwan 2017



Some Cold Water: Tesla Autopilot  
Misclassifies Truck as Billboard

Problem: Why? How can you trust a 
blackbox?



Deep Learning may be fragile in 
generalization against noise!

Background Info

Adversarial examples

[Goodfellow et al., 2014]

Small but malicious perturbations can result in severe
misclassification
Malicious examples generalize across different
architectures
What is source of instability?
Can we robustify network?

43 / 50



Kaggle survey: Top Data Science Methods

Academic Industry

https://www.kaggle.com/surveys/2017



What type of data is used at work?
https://www.kaggle.com/surveys/2017

Academic Industry



What’s wrong with deep learning?

Ali Rahimi NIPS’17: Machine (deep) Learning has become alchemy.
https://www.youtube.com/watch?v=ORHFOnaEzPc

Yann LeCun CVPR’15, invited talk: What’s wrong with deep learning? 
One important piece: missing some theory!
http://techtalks.tv/talks/whats-wrong-with-deep-learning/61639/



Perceptron: single-layer

Background Info

Perceptron, the basic block

Invented by Frank Rosenblatt (1957)

z = −→w · −→x + b

x1

x2

xd

···

b

f(z)

w1
w2

wd
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“The theory reported here clearly demonstrates the feasibility and fruitfulness of a 

quantitative statistical approach to the organization of cognitive systems. By the study of 

systems such as the perceptron, it is hoped that those fundamental laws of organization 

which are common to all information handling systems, machines and men included, may 

eventually be understood.”  -- Frank Rosenblatt 

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. In, 
Psychological Review, Vol. 65, No. 6, pp. 386-408, November, 1958.

Cybernetics/neural networks

Norbert Wiener Warren McCulloch & Walter Pitts Frank Rosenblatt



Locality or Sparsity of Computation

Why are compositional 
functions important?

Which one of these reasons: 
Physics? 

Neuroscience? <=== 
Evolution?

What is special about 
locality of computation?


Locality in “space”? 

Locality in “time”?

Locality of Computation

Locality or Sparsity is important:
Locality in time?
Locality in space? 

Minsky and Papert, 1969
Perceptron can’t do XOR classification
Perceptron needs infinite global 

information to compute connectivity

Among the most challenging scientific questions of our time are the 
corresponding analytic and synthetic problems:  How does the brain function? 
 Can we design a machine which will simulate a brain?
-- Automata Studies, 1956

Alan Turing John von Neumann Marvin Minsky John McCarthy

Artificial Intelligence



Multilayer Perceptrons (MLP) and 
Back-Propagation (BP) Algorithms

Rumelhart, Hinton, Williams (1986)
Learning representations by back-propagating 

errors, Nature, 323(9): 533-536

BP algorithms as stochastic gradient descent 
algorithms (Robbins–Monro 1950; Kiefer-
Wolfowitz 1951) with Chain rules of Gradient maps

MLP classifies XOR, but the global hurdle on 
topology (connectivity) computation still exists

Background Info

Multi-layer perceptron

17 / 50



Convolutional Neural Networks: shift 
invariances and locality

Background Info

Convolutional Neural Network (CNN)

Can be traced to Neocognitron of Kunihiko Fukushima
(1979)
Yann LeCun combined convolutional neural networks with
back propagation (1989)
Imposes shift invariance and locality on the weights
Forward pass remains similar
Backpropagation slightly changes – need to sum over the
gradients from all spatial positions

Source: [LeCun et al., 1998]

22 / 50

Biol. Cybernetics 36, 193 202 (1980) Biological 
Cybernetics 
 9 by Springer-Verlag 1980 

Neocognitron: A Self-organizing Neural Network Model 
for a Mechanism of Pattern Recognition 
Unaffected by Shift in Position 

Kunihiko Fukushima 
NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan 

Abstract. A neural network model for a mechanism of 
visual pattern recognition is proposed in this paper. 
The network is self-organized by "learning without a 
teacher", and acquires an ability to recognize stimulus 
patterns based on the geometrical similarity (Gestalt) 
of their shapes without affected by their positions. This 
network is given a nickname "neocognitron". After 
completion of self-organization, the network has a 
structure similar to the hierarchy model of the visual 
nervous system proposed by Hubel and Wiesel. The 
network consists of an input layer (photoreceptor 
array) followed by a cascade connection of a number of 
modular structures, each of which is composed of two 
layers of cells connected in a cascade. The first layer of 
each module consists of "S-cells', which show charac- 
teristics similar to simple cells or lower order hyper- 
complex cells, and the second layer consists of 
"C-cells" similar to complex cells or higher order 
hypercomplex cells. The afferent synapses to each 
S-cell have plasticity and are modifiable. The network 
has an ability of unsupervised learning: We do not 
need any "teacher" during the process of self- 
organization, and it is only needed to present a set of 
stimulus patterns repeatedly to the input layer of the 
network. The network has been simulated on a digital 
computer. After repetitive presentation of a set of 
stimulus patterns, each stimulus pattern has become to 
elicit an output only from one of the C-cells of the last 
layer, and conversely, this C-cell has become selectively 
responsive only to that stimulus pattern. That is, none 
of the C-cells of the last layer responds to more than 
one stimulus pattern. The response of the C-cells of the 
last layer is not affected by the pattern's position at all. 
Neither is it affected by a small change in shape nor in 
size of the stimulus pattern. 

1. Introduction 

The mechanism of pattern recognition in the brain is 
little known, and it seems to be almost impossible to 

reveal it only by conventional physiological experi- 
ments. So, we take a slightly different approach to this 
problem. If we could make a neural network model 
which has the same capability for pattern recognition 
as a human being, it would give us a powerful clue to 
the understanding of the neural mechanism in the 
brain. In this paper, we discuss how to synthesize a 
neural network model in order to endow it an ability of 
pattern recognition like a human being. 

Several models were proposed with this intention 
(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971; 
Fukushima, 1975). The response of most of these 
models, however, was severely affected by the shift in 
position and/or by the distortion in shape of the input 
patterns. Hence, their ability for pattern recognition 
was not so high. 

In this paper, we propose an improved neural 
network model. The structure of this network has been 
suggested by that of the visual nervous system of the 
vertebrate. This network is self-organized by "learning 
without a teacher", and acquires an ability to recognize 
stimulus patterns based on the geometrical similarity 
(Gestalt) of their shapes without affected by their 
position nor by small distortion of their shapes. 

This network is given a nickname "neocognitron"l, 
because it is a further extention of the "cognitron", 
which also is a self-organizing multilayered neural 
network model proposed by the author before 
(Fukushima, 1975). Incidentally, the conventional 
cognitron also had an ability to recognize patterns, but 
its response was dependent upon the position of the 
stimulus patterns. That is, the same patterns which 
were presented at different positions were taken as 
different patterns by the conventional cognitron. In the 
neocognitron proposed here, however, the response of 
the network is little affected by the position of the 
stimulus patterns. 

1 Preliminary report of the neocognitron already appeared else- 
where (Fukushima, 1979a, b) 
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron 

shifted in parallel from cell to cell. Hence, all the cells in 
a single cell-plane have receptive fields of the same 
function, but at different positions. 

We will use notations Us~(k~,n ) to represent the 
output of an S-cell in the kr th  S-plane in the l-th 
module, and Ucl(k~, n) to represent the output of a C-cell 
in the kr th  C-plane in that module, where n is the two- 
dimensional co-ordinates representing the position of 
these cell's receptive fields in the input layer. 

Figure 2 is a schematic diagram illustrating the 
interconnections between layers. Each tetragon drawn 
with heavy lines represents an S-plane or a C-plane, 
and each vertical tetragon drawn with thin lines, in 
which S-planes or C-planes are enclosed, represents an 
S-layer or a C-layer. 

In Fig. 2, a cell of each layer receives afferent 
connections from the cells within the area enclosed by 
the elipse in its preceding layer. To be exact, as for the 
S-cells, the elipses in Fig. 2 does not show the connect- 
ing area but the connectable area to the S-cells. That is, 
all the interconnections coming from the elipses are 
not always formed, because the synaptic connections 
incoming to the S-cells have plasticity. 

In Fig. 2, for the sake of simplicity of the figure, 
only one cell is shown in each cell-plane. In fact, all the 
cells in a cell-plane have input synapses of the same 
spatial distribution as shown in Fig. 3, and only the 
positions of the presynaptic cells are shifted in parallel 
from cell to cell. 

R3 ~I 

modifioble synapses 

) unmodifiable synopses 

Since the cells in the network are interconnected in 
a cascade as shown in Fig. 2, the deeper the layer is, the 
larger becomes the receptive field of each cell of that 
layer. The density of the cells in each cell-plane is so 
determined as to decrease in accordance with the 
increase of the size of the receptive fields. Hence, the 
total number of the cells in each cell-plane decreases 
with the depth of the cell-plane in the network. In the 
last module, the receptive field of each C-cell becomes 
so large as to cover the whole area of input layer U0, 
and each C-plane is so determined as to have only one 
C-cell. 

The S-cells and C-cells are excitatory cells. That is, 
all the efferent synapses from these cells are excitatory. 
Although it is not shown in Fig. 2, we also have 

Fig. 3. Illustration showing the input interconnections to the cells 
within a single cell-plane 

Fig. 2. Schematic diagram illustrating the 
interconnections between layers in the 
neocognitron 



MNIST Dataset Test Error 
LeCun et al. 1998
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Simple SVM performs 
as well as Multilayer 
Convolutional Neural 
Networks which need 
careful tuning (LeNets)

Dark era for NN: 1998-2012



Around the year of 2012…

Speech Recognition: TIMIT

Deep Learning revolution: success and challenges

Deep Learning for Speech Recognition

Performance improvements in spoken word error rate over the years on the
TIMIT acoustic-phonetic continuous speech corpus dataset.

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 9 / 85

Computer Vision: ImageNet

Deep Learning revolution: success and challenges

Deep Learning for Computer Vision

Performance improvements in top-5 error over the years on the ImageNet
Large-scale Visual Recognition Challenge.

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 13 / 85



AlexNet (2012)
Background Info

AlexNet (2012)
Architecture

8 layers: first 5 convolutional, rest fully connected
ReLU nonlinearity
Local response normalization
Max-pooling
Dropout

Source: [Krizhevsky et al., 2012]
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VGG (2014) [Simonyan-Zisserman’14]
Background Info

VGG (2014) [Simonyan and Zisserman, 2014]

Deeper than AlexNet: 11-19 layers versus 8
No local response normalization
Number of filters multiplied by two every few layers
Spatial extent of filters 3× 3 in all layers
Instead of 7× 7 filters, use three layers of 3× 3 filters

Gain intermediate nonlinearity
Impose a regularization on the 7× 7 filters

Source: https://blog.heuritech.com/2016/02/29/ 33 / 50



ResNet (2015) [HGRS-15]Background Info

ResNet (2015)

Solves problem by adding
skip connections
Very deep: 152 layers
No dropout
Stride
Batch normalization

Source: Deep Residual Learning for Image Recognition
35 / 50



Visualizing Deep Neural Networks

Background Info

Visualizing deep convolutional neural networks using
natural pre-images

Filters in first layer of CNN are easy to visualize, while
deeper ones are harder
Activation maximization seeks input image maximizing
output of the i-th neuron in the network
Objective

x∗ = arg min
x

R(x)− ⟨Φ(x), ei⟩ (3)

ei is indicator vector
R(x) is simple natural image prior

44 / 50



Visualizing VGGBackground Info

Visualizing VGG

Gabor-like images in first layer
More sophisticated structures in the rest

[Mahendran and Vedaldi, 2016]

45 / 50



Visual Neuroscience: Hubel/Wiesel, …

The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

Neuroscience
Harmonic Analysis
Approximation Theory
Statistics/ML

Visual Neuroscience – Hubel/Wiesel et seq.

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

Neuroscience
Harmonic Analysis
Approximation Theory
Statistics/ML

Simple Cells/Complex Cells
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Olshausen and Field 1996

The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

Neuroscience
Harmonic Analysis
Approximation Theory
Statistics/ML

Prediction/Inspiration by Neuroscience

Experimental Neuroscience uncovered the
I ... neural architecture of Retina/LGN/V1/V2/V3/ etc
I ... existence of neurons with weights and activation functions

(simple cells)
I ... pooling neurons (complex cells)

All these features are somehow present in today’s sucessful Deep
Learning systems

Neuroscience Deep Network
Simple cells First layer
Complex celle Pooling Layer

Grandmother cells Last layer

Theorists Olshausen and Field (Nature, 1996) demonstrated that
receptive fields learned from image patches
Deep Learning works often pay lip service to neuroscience
inspiration.

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?



First layers learned …

The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

Neuroscience
Harmonic Analysis
Approximation Theory
Statistics/ML

Olshausen and Field (1996)
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The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

Neuroscience
Harmonic Analysis
Approximation Theory
Statistics/ML

Olshausen and Field
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Transfer Learning?
Background Info

Transfer learning

Filters learned in first layers of a network are transferable
from one task to another
When solving another problem, no need to retrain the
lower layers, just fine tune upper ones
Is this simply due to the large amount of images in
ImageNet?
Does solving many classification problems simultaneously
result in features that are more easily transferable?
Does this imply filters can be learned in unsupervised
manner?
Can we characterize filters mathematically?

42 / 50

Deep Learning revolution: success and challenges

Training Deep Convolutional Networks

Training Deep Convolutional Networks

Zaid Harchaoui DeepNets and Kernel-based Methods November 1st, 2017 18 / 85



Some Open Theoretical Problems

´ Harmonic Analysis: What are the optimal (transferrable) 
representations of functions as input signals (sounds, images, …)?

´ Approximation Theory: When and why are deep networks better than 
shallow networks? 

´ Optimization: What is the landscape of the empirical risk and how to 
minimize it efficiently? 

´ Statistics: How can deep learning generalize well without overfitting 
the noise? 



Harmonic Analysis
´ Harmonic analysis: optimal representation of input signals
´ Wavelets are optimal sparse representations for certain class of images
´ Stephane Mallat: Deep Scattering Transform – translational, small deformational, 

rotational and scaling  invariances; the deeper is the network, the larger are the 
invariances

´ Mathew Hirn @IAS-HKUST talked about scattering net for energy functions on 3-D 
densities (images) 

The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

Neuroscience
Harmonic Analysis
Approximation Theory
Statistics/ML

Scattering Transform; Mallat (2012), Bruna and Mallat
(2014)

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

Scattering Transform: 
Mallat’12



Sparse Representations: Wavelet convolutions

x(t)

|x ⇥ ��1(t)| =
���
Z

x(u)��1(t� u) du
���

 �1

1/�1

     Singular Functions

|x ⇥ ��1(t)|



Compressed Sensing

Matrix Notation



Compressed Sensing 
Sparse Coding
Given a signal, we would like to find its sparse representation

Crude 
approximation

Convexify

Thresholding Algorithm



From Soft Thresholding to ReLU

Soft Thresholding ReLU: Soft Nonnegative 
Threshoding

First Layer of a Neural NetworkThresholding Algorithm



Convolutional Neural Network
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Convolutional Neural Network

Multi-layered Convolutional Sparse Modeling

Can we simultaneously learn 
dictionaries D’s and    ’s?

Multi-layered Convolutional Sparse ModelingMulti-layered Convolutional Sparse Modeling

Incoherence…
Papyan, Sulam, and Elad 2016



Approximation Theory

The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

Neuroscience
Harmonic Analysis
Approximation Theory
Statistics/ML

Approximation Theory, I

I Class prediction rule can be viewed as function f (x) of
high-dimensional argument

I
Curse of Dimensionality

I Traditional theoretical obstacle to high-dimensional
approximation

I “Functions of high dimensional x can wiggle in too many

dimensions to be learned from finite datasets”

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?



Approximation Theory

The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

Neuroscience
Harmonic Analysis
Approximation Theory
Statistics/ML

Approximation Theory, II

I Ridge Functions ⇢(u0x) mathematically same as deep learning
first layer outputs.

I Sums of Ridge Functions mathematically same as input to
second layer.

I Approximation by Sums of Ridge Functions f ⇡
P

i ⇢i (u
0
ix)

studied for decades

I Theorists (1990’s-Today): certain functions f (x)
approximated by ridge sums with no curse of dimensionalty

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?



(Sparse) Compositional Functions

The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

Neuroscience
Harmonic Analysis
Approximation Theory
Statistics/ML

Approximation Theory, III

I Compositional functions f (x) =
h(g1(xi1,1 , ..., xi1,k ), g2(xi2,1 , . . . , xi2,k ), . . . , g`(xi`,1 , . . . , xi`,k )) are
functions of small number of functions; `, k ⌧ d .

I VGG Nets are deep compositions

I Approximation by Compositional Functions studied for
decades

I Theorists (1990’s-Today): certain functions f (x) avoid curse
of dimensionalty using multilayer compositions

I T. Poggio (MIT) and Hrushikesh Mhaskar (Caltech) have
several papers analyzing deepnets as deep compositions.

I Poggio will speak to us October 25.
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Mhaskar-Poggio-Liao’16When is deep better than shallow

Theorem (informal statement)

Suppose that a function of d variables is hierarchically, locally, compositional . Both 
shallow and deep network can approximate f equally well. The  number of parameters of 
the shallow network depends  exponentially on d as               with the dimension 
whereas for the deep network dance is   

O(ε −d )
O(dε −2 )

f (x1, x2,..., x8 ) = g3(g21(g11(x1, x2 ),g12 (x3, x4 ))g22 (g11(x5, x6 ),g12 (x7, x8 )))

Mhaskar, Poggio, Liao, 2016

Hierarchically local compositionality



IAS-HKUST workshop talks

´ 9 Jan 2018, Tuesday: 
´ Ding-Xuan ZHOU Approximation Analysis of Distributed Learning and Deep CNNs

´ 10 Jan 2018, Wednesday: 
´ Philipp Grohs Approximation Results for Deep Neural Networks

´ 11 Jan 2018, Thursday: 
´ Gitta Kutyniok Optimal Approximation with Sparsely Connected Deep Neural 

Networks

´ Philipp Petersen Optimal Approximation of Classifier Functions by Deep ReLU
Networks


