
So far, we have introduced…

´ Mallat’s invariant scattering transform networks
´ The deeper the network, the more invariant (translation, local deformation,

scaling and rotation)

´ Poggio et al. local (sparse), hierarchical, compositional functions
´ Avoid the curse of dimensionality

´ Papyan et al. sparse cascaded convolutional dictionary learning
´ Uniqueness and stability guarantees of sparse recovery

Let’s continue on …

´ Harmonic Analysis: What are the optimal (transferrable)
representations of functions as input signals (sounds, images, …)?

´ Approximation Theory: When and why are deep networks better than
shallow networks?

´ Optimization: What is the landscape of the empirical risk and how to
minimize it efficiently?

´ Statistics: How can deep learning generalize well without overfitting
the noise?

Generalization of Supervised Learning

Collect data: 𝑥", 𝑦" 	𝑖 = 1, 2, … , 𝑛}

Learn a model: 𝑓: 	𝒳	 → 	𝒴, 	𝑓 ∈ 	ℋ

Predict new data: 	𝑥	 → 𝑓(𝑥)

A common approach to learn:

All 𝑥, 𝑦 	~	𝒟, where 𝒟 is
unknown

ERM (Empirical Risk Minimization)

min𝑅; 𝑤 := 	
1
𝑛	=𝑙(𝑤; 𝑥", 𝑦")

�

"

	

𝑤: model parameters
𝑙(𝑤; 𝑥, 𝑦): loss function w.r.t. data

Population Risk: 𝑅(𝑤) ≔ E[𝑙(𝑤; 𝑥, 𝑦)]

Generalization Error

Bias-Variance Tradeoff?

Deep
models

Models where p>20n are common

Why big models generalize well?
n=50,000
d=3,072
k=10

CIFAR10

Model parameters p/n
Train
loss

Test
error

CudaConvNet 145,578 2.9 0 23%

CudaConvNet
(with regularization)

145,578 2.9 0.34 18%

MicroInception 1,649,402 33 0 14%

ResNet 2,401,440 48 0 13%

What happens when I turn off the regularizers?

Ben Recht FoCM 2017

How to control generalization error?
Motivation

• However, when is a large, deep network, current best
mechanism to control generalization gap has two key ingredients:
– Stochastic Optimization

❖ “During training, it adds the sampling noise that corresponds to empirical-
population mismatch” [Léon Bottou].

– Make the model as large as possible.
❖ see e.g. “Understanding Deep Learning Requires Rethinking Generalization”,

[Ch. Zhang et al, ICLR’17].

�(X;⇥)

Traditional Learning Theory

Common form of generalization bound (in expectation or high probability)

Capacity Measurement Complexity

VC-dimension 𝑉𝐶 ≤ 	𝑂(𝐸 log |𝐸|)

𝜺-Covering number logO 𝑁QR ℱ, 𝜖,𝑚 ≤ 𝑂
𝐴𝐿X

Y YZ[

𝜖OY

Rademacher Average 𝑅\ ℱ ≤ 𝑂(𝜇Y)

Big model should fail!

|𝐸|: # of
edges

𝐿: # of layers

𝑅 𝑤 ≤ 	𝑅; 𝑤 +	
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦	𝑀𝑒𝑎𝑠𝑢𝑟𝑒

𝑛
�

Training Algorithms for Deep Learning

Non-adaptive

• SGD
• SGD with

momentu
m

• ……

Commonly Used
Algorithms

Adaptive

• Adam
• AdaGrad
• AdaDelta
• ……

Learn the
curvature
adaptively

Automaticall
y tune

parameters

Easy to
implement

Stochastic Gradient Descent

min𝑅; 𝑤 := 	
1
𝑛	=𝑙(𝑤; 𝑥", 𝑦")

�

"

	

Objective loss function:

where (𝑥", 𝑦") is the data, 𝑤 is the parameter vector.

Gradient Descent:𝑤hZ[= 𝑤h −
𝜂
𝑛=𝛻𝑙(𝑤h; 𝑥", 𝑦")

�

�

SGD: 𝑤hZ[= 𝑤h − 𝜂𝛻𝑙(𝑤h; 𝑥"l, 𝑦"l), where 𝑖h is uniform in {1, …, n}

O(n) time
complexity

O(1) time
complexity Extensions: mini-batch SGD

SGD with early stopping regularizes

Spectrally-normalized margin bounds for neural networks

Peter L. Bartlett

⇤
Dylan J. Foster

†
Matus Telgarsky

‡

Abstract

This paper presents a margin-based multiclass generalization bound for neural networks that scales

with their margin-normalized spectral complexity : their Lipschitz constant, meaning the product of

the spectral norms of the weight matrices, times a certain correction factor. This bound is empirically

investigated for a standard AlexNet network trained with SGD on the mnist and cifar10 datasets,

with both original and random labels; the bound, the Lipschitz constants, and the excess risks are all

in direct correlation, suggesting both that SGD selects predictors whose complexity scales with the

difficulty of the learning task, and secondly that the presented bound is sensitive to this complexity.

1 Overview
Neural networks owe their astonishing success not only to their ability to fit any data set: they also
generalize well, meaning they provide a close fit on unseen data. A classical statistical adage is that
models capable of fitting too much will generalize poorly; what’s going on here?

Let’s navigate the many possible explanations provided by statistical theory. A first observation is
that any analysis based solely on the number of possible labellings on a finite training set — as is the
case with VC dimension — is doomed: if the function class can fit all possible labels (as is the case with
neural networks in standard configurations (Zhang et al., 2017)), then this analysis can not distinguish it
from the collection of all possible functions!

Figure 1: An analysis of AlexNet (Krizhevsky et al., 2012) trained with SGD on cifar10, both with
original and with random labels. Triangle-marked curves track excess risk across training epochs (on
a log scale), with an ‘x’ marking the earliest epoch with zero training error. Circle-marked curves
track Lipschitz constants, normalized so that the two curves for random labels meet. The Lipschitz
constants tightly correlate with excess risk, and moreover normalizing them by margins (resulting in the
square-marked curve) neutralizes growth across epochs.

⇤
<peter@berkeley.edu>; University of California, Berkeley and Queensland University of Technology; work performed

while visiting the Simons Institute.

†
<djf244@cornell.edu>; Cornell University; work performed while visiting the Simons Institute.

‡
<mjt@illinois.edu>; University of Illinois, Urbana-Champaign; work performed while visiting the Simons Institute.

1

ar
X

iv
:1

70
6.

08
49

8v
2

 [c
s.L

G
]

5
D

ec
 2

01
7

Bartlett et al. 2017. Generalization error of AlexNet in Cifar10

Margin and Network Lipschitz based
Generalization error bound
(Bartlett et al. 2017)

(a) Margins. (b) Normalized margins.

Figure 2: Margin distributions at the end of training AlexNet on cifar10, with and without random
labels. With proper normalization, random labels demonstrably correspond to a harder problem.

A = (A1, . . . , AL) let FA denote the function computed by the corresponding network:

FA(x) := �L(AL�L�1(AL�1 · · ·�1(A1x) · · ·)). (1.1)

The network output FA(x) 2 RdL (with d0 = d and dL = k) is converted to a class label in {1, . . . , k}
by taking the argmax over components, with an arbitrary rule for breaking ties. Whenever input data
x1, . . . , xn 2 Rd are given, collect them as rows of a matrix X 2 Rn⇥d. Occasionally, notation will be
overloaded to discuss FA(XT

), a matrix whose i

th column is FA(xi). Let W denote the maximum of
{d, d1, . . . , dL}. The l2 norm k · k2 is always computed entry-wise; thus, for a matrix, it corresponds to
the Frobenius norm.

Next, define a collection of reference matrices (M1, . . . ,ML) with the same dimensions as A1, . . . , AL;
for instance, to obtain a good bound for ResNet (He et al., 2016), it is sensible to set Mi :

= I, the
identity map, and the bound below will worsen as the network moves farther from the identity map; for
AlexNet (Krizhevsky et al., 2012), the simple choice Mi = 0 suffices. Finally, let k · k� denote the spectral
norm, and let k · kp,q denote the (p, q) matrix norm, defined by kAkp,q :

=

�

�

(kA:,1kp, . . . , kA:,mkp)
�

�

q
for

A 2 Rd⇥m. The spectral complexity RFA = RA of a network FA with weights A is the defined as

RA :

=

0

@

L
Y

i=1

⇢ikAik�

1

A

0

@

L
X

i=1

kA>
i �M

>
i k2/32,1

kAik2/3�

1

A

3/2

. (1.2)

The following theorem provides a generalization bound for neural networks whose nonlinearities are
fixed but whose weight matrices A have bounded spectral complexity RA.

Theorem 1.1. Let nonlinearities (�1, . . . ,�L) and reference matrices (M1, . . . ,ML) be given as above
(i.e., �i is ⇢i-Lipschitz and �i(0) = 0). Then for (x, y), (x1, y1), . . . , (xn, yn) drawn iid from any probability
distribution over Rd ⇥ {1, . . . , k}, with probability at least 1 � � over ((xi, yi))

n
i=1, every margin � > 0

and network FA : Rd ! Rk with weight matrices A = (A1, . . . , AL) satisfy

Pr
h

argmax

j
FA(x)j 6= y

i

 bR�(FA) + eO

kXk2RA
�n

ln(W) +

r

ln(1/�)

n

!

,

where bR�(f)  n

�1
P

i 1
⇥

f(xi)yi  � +maxj 6=yi f(xi)j

⇤

and kXk2 =

p

P

i kxik22.

The full proof and a generalization beyond spectral norms is relegated to the appendix, but a sketch
is provided in Section 3, along with a lower bound. Section 3 also gives a discussion of related work:
briefly, it’s essential to note that margin and Lipschitz-sensitive bounds have a long history in the neural
networks literature (Bartlett, 1996; Anthony and Bartlett, 1999; Neyshabur et al., 2015); the distinction

3

(a) Margins. (b) Normalized margins.

Figure 2: Margin distributions at the end of training AlexNet on cifar10, with and without random
labels. With proper normalization, random labels demonstrably correspond to a harder problem.

A = (A1, . . . , AL) let FA denote the function computed by the corresponding network:

FA(x) := �L(AL�L�1(AL�1 · · ·�1(A1x) · · ·)). (1.1)

The network output FA(x) 2 RdL (with d0 = d and dL = k) is converted to a class label in {1, . . . , k}
by taking the argmax over components, with an arbitrary rule for breaking ties. Whenever input data
x1, . . . , xn 2 Rd are given, collect them as rows of a matrix X 2 Rn⇥d. Occasionally, notation will be
overloaded to discuss FA(XT

), a matrix whose i

th column is FA(xi). Let W denote the maximum of
{d, d1, . . . , dL}. The l2 norm k · k2 is always computed entry-wise; thus, for a matrix, it corresponds to
the Frobenius norm.

Next, define a collection of reference matrices (M1, . . . ,ML) with the same dimensions as A1, . . . , AL;
for instance, to obtain a good bound for ResNet (He et al., 2016), it is sensible to set Mi :

= I, the
identity map, and the bound below will worsen as the network moves farther from the identity map; for
AlexNet (Krizhevsky et al., 2012), the simple choice Mi = 0 suffices. Finally, let k · k� denote the spectral
norm, and let k · kp,q denote the (p, q) matrix norm, defined by kAkp,q :

=

�

�

(kA:,1kp, . . . , kA:,mkp)
�

�

q
for

A 2 Rd⇥m. The spectral complexity RFA = RA of a network FA with weights A is the defined as

RA :

=

0

@

L
Y

i=1

⇢ikAik�

1

A

0

@

L
X

i=1

kA>
i �M

>
i k2/32,1

kAik2/3�

1

A

3/2

. (1.2)

The following theorem provides a generalization bound for neural networks whose nonlinearities are
fixed but whose weight matrices A have bounded spectral complexity RA.

Theorem 1.1. Let nonlinearities (�1, . . . ,�L) and reference matrices (M1, . . . ,ML) be given as above
(i.e., �i is ⇢i-Lipschitz and �i(0) = 0). Then for (x, y), (x1, y1), . . . , (xn, yn) drawn iid from any probability
distribution over Rd ⇥ {1, . . . , k}, with probability at least 1 � � over ((xi, yi))

n
i=1, every margin � > 0

and network FA : Rd ! Rk with weight matrices A = (A1, . . . , AL) satisfy

Pr
h

argmax

j
FA(x)j 6= y

i

 bR�(FA) + eO

kXk2RA
�n

ln(W) +

r

ln(1/�)

n

!

,

where bR�(f)  n

�1
P

i 1
⇥

f(xi)yi  � +maxj 6=yi f(xi)j

⇤

and kXk2 =

p

P

i kxik22.

The full proof and a generalization beyond spectral norms is relegated to the appendix, but a sketch
is provided in Section 3, along with a lower bound. Section 3 also gives a discussion of related work:
briefly, it’s essential to note that margin and Lipschitz-sensitive bounds have a long history in the neural
networks literature (Bartlett, 1996; Anthony and Bartlett, 1999; Neyshabur et al., 2015); the distinction

3

Stochastic Gradient/Discrete Langevin
Dynamics (SGLD)

SGLD is a variant of SGD:

Injection of Gaussian noise makes SGLD completely different
with SGD

𝑤hZ[= 𝑤h − 𝜂𝛻𝑙 𝑤h; 𝑥"l, 𝑦"l + Om
n

� 𝑧h, where 𝑧h ∼ 𝒩(0, 𝐼t)

For small enough step size 𝜂h, Gaussian noise will dominate the
stochastic gradient.

Distinctions of SGLD
Intuitively, injected isotropic Gaussian noise helps escape saddle points or local minimum

SGLD is the discretization of following SDE SGSG+noise

𝑑𝑊 𝑡 = −𝛻𝐹 𝑊 𝑡 𝑑𝑡 +
2
𝛽

�
𝑑𝐵(𝑡)

Its distribution converges to
Gibbs distribution ∝ exp	(−𝛽𝐹(𝑤))

where 𝐹 ⋅ is the empirical loss function, 𝐵(𝑡) is the standard Brownian
motion

Large 𝛽 will concentrate
on the global minimizer of

𝐹(𝑤)

Liwei Wang et al. 2017

From the view of stability theory:

Under	mild	conditions	of	(surrogate)	loss	function,	the	
generalization	error	of	SGLD	at	N-th round	satisfies

𝐸 𝑙 𝑤�, 𝑧 − 𝐸� 𝑙 𝑤�, 𝑧 ≤ 𝑂
1
𝑛 𝑘� + 𝐿 𝛽 = 𝜂�

�

����Z[

�

where 𝐿 is the Lipschitz constant, and 𝑘� ≔
min 	{𝑘: 𝜂�𝛽𝐿O < 1}

If consider high probability form, there is an additional 𝑂� 1/𝑛� term

Lipschitz Bound by Liwei Wang et al. 2017

From the view of PAC-Bayesian theory:

For	regularized	ERM	with	𝑅 𝑤 = 𝜆 𝑤 O/2.	Under	mild	conditions,	
with	high	probability,	the	generalization	error	of	SGLD	at	N-th
round	satisfies

𝐸 𝐸[𝑙 𝑤�, 𝑧] − 𝐸� 𝐸[𝑙 𝑤�, 𝑧] ≤ 𝑂
𝛽
𝑛=𝜂�𝑒¤¥(¦§¤¦¨)/O𝐸[𝑔�

O]
�

��[

�

where 𝑇� = ∑ 𝜂��
¬�[, 𝑔� is	the	stochastic	gradient	in	each	round.

Comparison Two Results

Ø In expectation, stability bound has a faster 𝑂 [
;
	 rate.

Ø Effect of step sizes in PAC-Bayes exponentially decay with
time.

Both bounds suggest “train faster, generalize better”,
which explain the random label experiments in ICLR17

Ø PAC-Bayes bound is data dependent, and doesn’t rely
on Lipschitz condition.

The Landscape of RisksMotivation
• However, when is a large, deep network, current best

mechanism to control generalization gap has two key ingredients:
– Stochastic Optimization

❖ “during training, it adds the sampling noise that corresponds to empirical-
population mismatch” [Léon Bottou].

– Make the model as large as possible.
❖ see e.g. “Understanding Deep Learning Requires Rethinking Generalization”, [Ch.

Zhang et al, ICLR’17].

• We first address how overparametrization affects the energy
landscapes .

• Goal 1: Study simple topological properties of these landscapes for
half-rectified neural networks.

• Goal 2: Estimate simple geometric properties with efficient, scalable
algorithms. Diagnostic tool.

�(X;⇥)

E(⇥), Ê(⇥)

Motivation
• However, when is a large, deep network, current best

mechanism to control generalization gap has two key ingredients:
– Stochastic Optimization

❖ “during training, it adds the sampling noise that corresponds to empirical-
population mismatch” [Léon Bottou].

– Make the model as large as possible.
❖ see e.g. “Understanding Deep Learning Requires Rethinking Generalization”, [Ch.

Zhang et al, ICLR’17].

• We first address how overparametrization affects the energy
landscapes .

• Goal 1: Study simple topological properties of these landscapes for
half-rectified neural networks.

• Goal 2: Estimate simple geometric properties with efficient, scalable
algorithms. Diagnostic tool.

�(X;⇥)

E(⇥), Ê(⇥)

A `Deep’ Dream:
All Critical Point/local optima = Global Optima?

´ Choromanska-LeCun-Ben Arous’15: most of critical values are
concentrated in a narrow bind of global optima, using random Morse
theory on sphere (spin class models)

´ Haeffele et al.’15,16: overparameterized tensor factorization models, every
local optima are global optima

´ Kawaguchi’16: linear networks have no poor local optima

´ Bruna et al.’16,17: simple sublevel set topology of multilinear regression, with
group symmetry, and some nonlinear networks

´ Chaudhari et al’17: Moreau envelope of empirical risk

´ Pennington & Bahri’17: Hessian Analysis using Random Matrix Theory

A Dream: All Critical Point = Global Optima?
Prior Related Work

• Models from Statistical physics have been considered as possible
approximations [Dauphin et al.’14, Choromanska et al.’15, Segun et
al.’15]

• Tensor factorization models capture some of the non convexity
essence [Anandukar et al’15, Cohen et al. ’15, Haeffele et al.’15]

• [Shafran and Shamir,’15] studies bassins of attraction in neural
networks in the overparametrized regime.

• [Soudry’16, Song et al’16] study Empirical Risk Minimization in two-
layer ReLU networks, also in the over-parametrized regime.

• [Tian’17] studies learning dynamics in a gaussian generative setting.
• [Chaudhari et al’17]: Studies local smoothing of energy landscape

using the local entropy method from statistical physics.
• [Pennington & Bahri’17]: Hessian Analysis using Random Matrix Th.
• [Soltanolkotabi, Javanmard & Lee’17]: layer-wise quadratic NNs.

Nonconvexity vs. Gradient Descent
Non-convexity ≠ Not optimizable

• We can perturb any convex function in such a way it is no longer
convex, but such that gradient descent still converges.

• E.g. quasi-convex functions.

Symmetry and Group Invariance
Non-convexity ≠ Not optimizable

• We can perturb any convex function in such a way it is no longer
convex, but such that gradient descent still converges.

• E.g. quasi-convex functions.

• In particular, deep models have internal symmetries.

F (✓) = F (g.✓) , g 2 G compact.

Linear Networks

Toplogy of Nonconvex Landscape

•Given loss we consider its representation in terms
of level sets:

•A first notion we address is about the topology of the level sets .

• In particular, we ask how connected they are, i.e. how many
connected components at each energy level ?

Analysis of Non-convex Loss Surfaces

E(✓) , ✓ 2 Rd ,

Nu

⌦u

E(✓) =

Z 1

0
1(✓ 2 ⌦u)du , ⌦u = {y 2 Rd ; E(y)  u} .

u

Simple Topology

Simple Topology of Linear Networks
[Bruna-Freeman’16]

Group Symmetries [Bruna-Venturi-Bandiera’17]

Nonlinear ReLU network

Better Optimization Algorithms?

´ Backpropagation Algorithm (made popular by Rumelhart-Hinton-
Williams’1986) as stochastic gradient descent is equivalent to Larangian
Multiplier method with gradient descent on weights (prox-linear)
´ Used in control theory (dynamic programming) in 1960s

´ It suffers from vanishing of gradients due to the chain rule of gradient mapExperiment Four: Saturation? III
784 ! 30 ! 30 ! 10
Let’s look at the learning speed of BP[2]: early hidden layers learn
much more slowly than later hidden layers

Figure: BP on MNIST[2]: Two hidden layers, speed of learning

Multi-Layer Perceptron (MLP)Background Info

Multi-layer perceptron

17 / 50

Forward Pass Background Info

Forward pass

Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]’s
Nonlinearities: sigmoid, hyperbolic tangent, (recently)
ReLU.

Algorithm 1 Forward pass
Input: x0
Output: xL

1: for ℓ = 1 to L do
2: xℓ = fℓ(Wℓxℓ−1 + bℓ)
3: end for

18 / 50

Stochastic Gradient Descent TrainingBackground Info

Training neural networks

Training examples {xi
0}n

i=1 and labels {yi}n
i=1

Output of the network {xi
L}m

i=1
Objective

J({Wl}, {bl}) = 1
n

n∑

i=1

1
2∥y

i − xi
L∥22 (1)

Gradient descent

Wl = Wl − η
∂J

∂Wl

bl = bl − η
∂J

∂bl

: In practice: use Stochastic Gradient Descent (SGD)

19 / 50

Backward Propagation as Lagrangian
Multiplier (LeCun’88)

Background Info

back-propagation – derivation
derivation from LeCun et al. 1988

Given n training examples (Ii, yi) ≡ (input,target) and L layers
Constrained optimization

min
W,x

∑n
i=1 ∥xi(L)− yi∥2

subject to xi(ℓ) = fℓ

[
Wℓxi (ℓ− 1)

]
,

i = 1, . . . , n, ℓ = 1, . . . , L, xi(0) = Ii

Lagrangian formulation (Unconstrained)

min
W,x,B

L(W, x, B)

L(W, x, B) = ∑n
i=1

{

∥xi(L)− yi∥22 +

∑L
ℓ=1 Bi(ℓ)T

(
xi(ℓ)− fℓ

[
Wℓxi (ℓ− 1)

])}

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf 20 / 50http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf

BP derivation Background Info

back-propagation – derivation
∂L
∂B

Forward pass

xi(ℓ) = fℓ

[
Wℓxi (ℓ− 1)
︸ ︷︷ ︸

Ai(ℓ)

]
ℓ = 1, . . . , L, i = 1, . . . , n

∂L
∂x , zℓ = [∇fℓ]B(ℓ)

Backward (adjoint) pass

z(L) = 2∇fL

[
Ai(L)

]
(yi − xi(L))

zi(ℓ) = ∇fℓ

[
Ai(ℓ)

]
W T

ℓ+1zi(ℓ + 1) ℓ = 0, . . . , L− 1

W ←W + λ ∂L
∂W

Weight update

Wℓ ←Wℓ + λ
∑n

i=1 zi(ℓ)xT
i (ℓ− 1) 21 / 50

Batch NormalizationBackground Info

Batch normalization

Algorithm 2 Batch normalization [Ioffe and Szegedy, 2015]
Input: Values of x over minibatch x1 . . . xB, where x is a certain
channel in a certain feature vector
Output: Normalized, scaled and shifted values y1 . . . yB

1: µ = 1
B

∑B
b=1 xb

2: σ2 = 1
B

∑B
b=1(xb − µ)2

3: x̂b = xb−µ√
σ2+ϵ

4: yb = γx̂b + β

Accelerates training and makes initialization less sensitive
Zero mean and unit variance feature vectors

37 / 50

Alternative: (Augmented) Lagrangian
Multiplier with Block Coordinate Descent

´ ADMM-type: Taylor et al. ICML 2016

´ Proximal Propagation, to appear in ICLR 2018

´ BCD with zero Lagrangian multiplier: Zhang et al. NIPS 2017

´ Discrete EMSA of PMP: Qianxiao LI et al 2017, talk on Monday in IAS workshop
´ No-vanshing gradients and parallelizable

´ Some convergence theory: preliminary results on ADMM+BCD with Jinshan Zeng,
Shaobo Lin, and Tsz Kit Lau et al.

Experiment results on Higgs dataset from Taylor et al’16

• High e�ciency of ADMM using multi-core CPUs (vs. SGD using GPUs)
• No gradient vanishing of ADMM (vs. SGD)

2 / 1

Thank you!

