So far, we have infroduced...

= Mallat's invariant scattering tfransform networks

» The deeper the network, the more invariant (translation, local deformation,
scaling and rotation)

» Poggio et al. local (sparse), hierarchical, compositional functions
» Avoid the curse of dimensionality
» Papyan et al. sparse cascaded convolutional dictionary learning

= Uniqueness and stability guarantees of sparse recovery



Let’'s continue on ...

» Harmonic Analysis: What are the optimal (transferrable)
representations of functions as input signals (sounds, images, ...)¢

» Approximation Theory: When and why are deep networks better than
shallow networks?

= Optimization: What is the landscape of the empirical risk and how to
minimize it efficiently?

» Statistics: How can deep learning generalize well without overfitting
the noise?



Generalization of Supervised Learning

All (x,y) ~D, where D is
unknown

A common approach to learn:
ERM (Empirical Risk Minimization)

1
min R, (w): = = Z L(w; x;, i)
i

w:. model parameters
L(w; x,y): loss function w.r.t. data

Population Risk: R(w) := E[l(w; x,y)]



Generalization Error

*\\Ve consider the standard ML setup: N
= o Z 5($i,yi)
1<

¢(z) convex

E(©) = E(x y,.pl(®(X;0),Y) + R(O)

E(©) =Ex y)~p {(2(X;0),Y) .
R(O): regularization

e Population loss decomposition (@ka "fundamental theorem of ML"):
E(©*)= FE©*) +E©")-E©O").
v e - J
training error generalization gap

* | ong history of techniques to provably control generalization error
via appropriate regularization.

» Generalization error and optimization are entangled [Bottou &
Bousquet]



Bias-Variance Tradeoff?¢

Variance

Optimum Model Complexity

8
o
A= : = *
Model Complexity T
Deep
models

Models where p>20n are common



Why big models generalize well?
W Kl ds CreriO 02

k=10
What happens when | turn off the regularizers?

Train Test
Model parameters p/n loss  error
CudaConvNet 145,578 2.9 0 23%
CudaConvNet 145,578 29 0.34 | 8%
(with regularization)
Microlnception 1,649,402 33 0 | 4%
ResNet 2,401,440 48 0 1 3%

Ben Recht FOCM 2017




How to control generalization errore

e However, when ®(X; ©) is alarge, deep network, current best
mechanism to control generalization gap has two key Ingredients:

— Stochastic Optimization

< "During training, it adds the sampling noise that corresponds to empirical-
oopulation mismatch” [Léon Bottou].

— Make the model as large as possible.

*see e.g. "Understanding Deep Leaming Reguires Rethinking Generalization”,
Ch. Zhang et al, ICLR"17].




Traditional Learning Theory

Common form of generalization bound (in expectation or high probability)

Capacity Measure

R(w) < R,(w) + \/

n

/.
| Copacity Measurement  Complexiy

VC-dimension Ve < O(|E|log|E|) edges
L(L+1)
: (ALy)
E-Covering number log, Ny, (F,e,m) < 0 o L: # of layers
Rademacher Average R, (F) < o@h)

[Big model should faill




Training Algorithms for Deep Learning

[ Commonly Used ]

Algorithms
< > Learn the
: . : curvature
Non adaptive Adaptive adaptively
Easy to
« SGD implement Ad
. . am
« SGD with
momentu © Adacrad
, « AdaDelta
m Automaticall
. yTUﬂG e ...

parameters




Stochastic Gradient Descent

Objective loss function:
min R, (w): = — Z (W; x3, yi)
(x;, vy;)Is the data, w is the parameter vector.

. n O(n) time
lent Descentwey; = wy — EZ VIi(we; xi, yi) <[ complexity }

Wey1 = wWe — nVI(we; x4, yi,). where i is uniform in {1, ..., n}

[ o “ﬁ ‘Extensions: mini-batch SGD
complexity | ARl TITIRHIE T D2




SGD with early stopping regularizes

———— excess risk 0.9

WA .__A‘=¢X—A—
VA
cifar excess risk
cifar Lipschitz / @
cifar Lipschitz/margin A
cifar [random] excess risk
cifar [random] Lipschitz
o
A
A X=A —~A 7 A A A
) /I / i . o °

o=
epoch 10
|

epoch 100

Bartlett et al. 2017. Generalization error of AlexNet in Cifar10



Margin and Network Lipschifz based
Generalization error bound

(Bartlett et al. 2017)

Theorem 1.1. Let nonlinearities (o1,...,0r) and reference matrices (My, ..., M) be given as above
(i.e., o; is p;-Lipschitz and 0;(0) = 0). Then for (z,y), (x1,Y1),- -, (Tn, Yn) drawn iid from any probability
distribution over RY x {1,...,k}, with probability at least 1 — & over ((x;,y;))",, every margin vy > 0
and network F : RY — R* with weight matrices A = (A1, ..., Ar) satisfy

Pr |arg max Fa(2); # y| < Ry(Fa) + O (Ml (W) + ln(1/5)>,

where Ry (f) < nV Y, 1 [f(:)y, < v +maxjy, £(2:),] and | X[l = /3, [w].

The spectral complezity Rrp, = R4 of a network Fu with /\‘Neights A is the defined as

: a7 =T\
wim (T o, ) (SR 2kr )
= AR




Stochastic Gradient/Discrete Langevin
Dynamics (SGLD)

SGLD is a variant of SGD:

Wiig = Wy — nVl(wt; xit,yit) + \/%zt, where z; ~ N (0,1,)

njection of Gaussian noise makes SGLD completely different
with SGD

For small enough step size n,, Gaussian noise will dominate the
stochastic gradient.



Distinctions of SGLD

Intuitively, injected isotropic Gaussian noise helps escape saddle points or local minimum

SGLD is the discreftization of following SDE $Ginoise 00

r i |

2
(0)i=-VF(W(t))dt + j%dB(t)

empirical loss function, B(t) is the standard Brownian

Its distribution converges to } :D { Large g will concentrate J

Gibbs distribution o exp(—BF (w)) on the 9'05;?' q““‘mizer of
w




Liwel Wang et al. 2017

From the view of stabillity theory:

ﬁnder mild conditions of (surrogate) loss function, the \
generalization error of SGLD at N-th round satisfies

1 N
Ellws, D] - Esllws, D1 < 0|~ ko + L[5 ) s

where L is the Lipschitz constant, and k, =
\min {k:neBL% < 13 -/
If \Bonsider high probability form, there is an additional 0(y/1/n) terrr




Lipschitz Bound by Liweil Wang et al. 2017

From the view of PAC-Bayesian theory:

round satisfies

\

E[E[l(ws,z)]] — Es[E[l(ws, 2)]] < O (

/For regularized ERM with R(w) = /1| lw| |2/2. Under mild conditions
with high probability, the generalization error of SGLD at N-th

N
B neeianTorzE |gk||2]>
k=1

there Ty = X¥_1 Mk, g is the stochastic gradient in each round. j




Comparison Two Results

Both bounds suggest “train faster, generalize better”,
which explain the random label experiments in ICLR17

»/In expectation, stability bound has a faster 0 (%) rate.
» PAC-Bayes bound is data dependent, and doesn’t rely
on Lipschitz condition.

» Effect of step sizes in PAC-Bayes exponentially decay with
time.



The Landscape of Risks

e However, when ®(X; ©) is a large, deep network, current best
mechanism to control generalization gap has two key ingredients:
— Stochastic Optimization

< 'during training, It adds the sampling noise that corresponds to empirical-
population mismatch” [Léon Bottou].

— Make the model as large as possible.

*see e.g. "Understanding Deep Leaming Reqguires Rethinking Generalization”, [Ch,
/hang et al, ICLR17],

*\e lirst address how overparametrization affects the energy
andscapes E(0), E(©).



A Deep’' Dream:
All Critical Point/local optima = Global Optima®e

» Choromanska-LeCun-Ben Arous’'15: most of critical values are
concentrated in a narrow bind of global optima, using random Morse
theory on sphere (spin class models)

» Haeffele et al.’15,16: overparameterized tensor factorization models, every
local optima are global optima

» Kawaguchi’'1é: linear networks have no poor local optima

» Bruna et al.’16,17: simple sublevel set topology of multilinear regression, with
group symmetry, and some nonlinear networks

» Chaudhari et al’'17: Moreau envelope of empirical risk

» Pennington & Bahri'17: Hessian Analysis using Random Matrix Theory



A Dream: All Critical Point = Global Optima<

* \odels from Statistical physics have been considered as possitle

approximations [Dauphin et al.’14, Choromanska et al.’' 15, Segun et
al."15]

* [cNSor factorization models capture some of the non convexity
essence [Anandukar et al'15, Cohen et al. '"15, Haeffele et al.'15]

e [Shafran and Shamir,' 15] studies bassins of attraction in neural
networks in the overparametrized regme.

e [Soudry'16, Song et al'16] study Empirical Risk Minimization in two-
layer Rel_LU networks, also in the over-parametrized regme.

e [Tlan'1 /] studies leaming dynamics in a gaussian generative setting.

e [(Chaudnari et a1 7]: Studies local smoothing of energy landscape
using the local entropy method from statistical physics.

e [Pennington & Bahri'1 7] Hessian Analysis using Random Matrix Th,
e [Soltanclkotabl, Javanmard & Lee' 1 7] layer-wise quadratic NNs,



Nonconvexity vs. Gradient Descent

o \\le can perturb any convex function In such a way it is no longer
convex, but such that gradient descent still converges.

e - g. quasi-convex functions.



Symmeitry and Group Invariance

F(0)=F(g.0), g € G compact.
*\\le can perturb any convex function in such a way 1t is no longer
convex, but such that gradient descent still converges.

e - g. quasi-convex functions.
* N particular, deep models have internal symmetries.



Linear Networks

e SOMe authors have considered linear "deep” models as a first step
towards understanding nonlinear deep models:

EWy,...,Wk) =Exyyp|[Wk.. W1 X -Y|*.
XeR", YeR™, W,e REXT-1

Theorem: [Kawaguchi’16] If ¥ = E(XX?) and E(XY7)
are full-rank and ¥ has distinct eigenvalues, then FE(©)
has no poor local minima.

e studying critical points.

e |ater generalized in [Hardt & Ma'"16, Lu & Kawaguchi'17]



Toplogy of Nonconvex Landscape

*Given loss E(8) ,6 € R® , we consider its representation in terms
of level sets:

E(@)z/oool(HEQu)du, Qu={yeR?; E(y) <u}

u

* A first notion we address is about the topalogy of the level sets

e |n particular, we ask how connected they are, 1.e. how many
connected components N, at each energy level u”/



Simple Topology

o A first notion we address is about the topalogy of the level sets

—In particular, we ask how connected they are, i.e. how many connected
components IV, at each energy level u?

e [his is directly related to the guestion of global minima:

Proposition: If N, =1 for all v then £
has no poor local minima.

(i.e. no local minima y* s.t. E(y*) > min, E(y))

*\We say £ is simple in that case.
* [he converse is clearly not true.




Simple Topology of Linear Networks
[Bruna-Freeman'1 6]

E(Wy,...,Wk) =Exy)p[Wk.. Wi X -Y|?.

Proposition: [BF’16]
1. If ng > min(n,m), 0 < k < K, then N, = 1 for all u.

2. (2-layer case, ridge regression)
E(W1, W2) = E(x,y)~p[W2W1 X = Y2 + A([Wa]]2 + |[W2|?)
satisfies N, = 1 V u if n; > min(n, m).

*\/Ve pay extra redundancy price to get simple topology.



Group Symmetries [Bruna-Venturi-Bandiera'17]

e Q): How much extra redundancy are we paying to achieve N, =1
instead of simply no poor-local minima’”

—In the multiinear case, we don't nesd ng > min(n, m)
+\We do the same analysis in the quotient space defined by the equivalence

relaionshio i ~ W & W = WU .U € GL(R") .

Corollary [LBB’17]|: The Multilinear regression
Ex,yvy~p||W1.. WX — Y'||? has no poor local minima.

+ Construct paths on the Grassmanian manifold of subspaces.

+ Generalizes best known results for multiinear case (No assumptions on data
covariance).



Nonlinear ReLU network

e G00d behavior is recovered with nonlinear Rel U networks,
orovided they are sufficiently overparametrized:

e Sctup: two-layer RelLlU network:
P(X;0) =Wop(W1X), p(z) = max(0,z).W; € R™*" W, € R™
Theorem [BF’16]: For any ©4 08 ¢ R™*" R™,
with E(©{4:B}) < X there exists path ~(t)
from ©4 and ©F such that
Vit,E(v(t) <max(\e€) and e ~ m™

3=

e Overparametrisation “wipes-out” local minima (and group
symmetries).

* [he bound is cursed by dimensionality, ie exponential in n .

» Open question: polynomial rate using Taylor decomp of p(2) ?



Better Optimization Algorithmse

» Backpropagation Algorithm (made popular by Rumelhart-Hinton-
Williams’'1986) as stochastic gradient descent is equivalent to Larangian
Multiplier method with gradient descent on weights (prox-linear)

» Used in control theory (dynamic programming) in 1960s

» | suffers from vanishing of gradients due to the chain rule of gradient map

Speed of learning: 2 hidden layers

200 300
Number of epochs of training

Figure: BP on MNIST[2]: Two hidden layers, speed of learning



Multi-Layer Perceptron (MLP)

i




Forward Pass

@ Cascade of repeated [linear operation followed by
coordinatewise nonlinearity]’s

@ Nonlinearities: sigmoid, hyperbolic tangent, (recently)
RelLU.

Algorithm 1 Forward pass

Input: z,
Output: z;,

1: for/ =110 L do
2:  wy= fe(Wyzp—1 + by)
3: end for




Stochastic Gradient Descent Training

@ Training examples {z}?*_, and labels {3*}"
@ Output of the network {z% }™,

@ Obijective
1 - 1 7 7 12
JAWi},{bi}) = EZ§||Q — 7|3 (1)
@ Gradient descent
oJ
W, =W, - nc’in
0J
b; bz—na—bl

In practice: use Stochastic Gradient Descent (SGD)



Backward Propagation as Lagrangian
Multiplier (LeCun’88)

Given n training examples (I;,y;) = (input,target) and L layers
@ Constrained optimization

min >ict (L) — will2
subjectto z;(¢) = fy [Wm (£—1) },
i=1,...,n, ¢=1,...,L, ;(0) =1,
@ Lagrangian formulation (Unconstrained)
%Q%E(W, x, B)

£(va>B) - zn:l {xZ(L> - yZH% +

Sy Bi(0)T (%‘(f) — fe [Wﬁxi (£ — 1)D }

http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf



BP derivation

0B

Forward pass

xi(ﬁ):fg[l/lfgxi(f—lﬂ ¢=1,....,L, i=1,...,n

Ai(€)

o %5 2 = [VfB(¢)

Backward (adjoint) pass

z(L) =2V fy [Ai(Lﬂ (yi — xi(L))
2(0) = Vo A0 Whyz(e+1) £=0,...,L—1

o W« W+ 2J&
Weight update
Wi Wy + XY 0 z(O)x] (0 —1) 21/




Batch Normalization

Algorithm 2 Batch normalization [loffe and Szegedy, 2015]

Input: Values of x over minibatch z; ... x5, where x is a certain

channel in a certain feature vector
Output: Normalized, scaled and shifted values y; ... yp

B
— % 2521 Tp
B
2 % Zb:1($b - N)2
Tp—[
Voiite
= YT + B

>» Q=

el < A
S o

Y

@ Accelerates training and makes initialization less sensitive

@ Zero mean and unit variance feature vectors



Alternative: (Augmented) Lagrangian

Multiplier with Block Coordinate Descent
ADMM-type: Taylor et al. ICML 2016

Proximal Propagation, to appearin ICLR 2018

BCD with zero Lagrangian multiplier: Zhang et al. NIPS 2017

Discrete EMSA of PMP: Qianxiao LI et al 2017, talk on Monday in IAS workshop

= No-vanshing gradients and parallelizable

Some convergence theory: preliminary results on ADMM+BCD with Jinshan Zeng,
Shaobo Lin, and Tsz Kit Lau et al.

Experiment results on Higgs dataset from Taylor et al'16

350, 0.65
pu—
G T
> 300) /
3
< 250 2060 f
g | /
£ 2001| 8 | /
g \ < 0.5 | /
S 150) | S /
g 1 — .
2 109 £ / /
° 0.50f/ //
2 /
£ 50 .
= T
— 0.45
01000 2000 3000 4000 5000 6000 7000 10° 107 107 10
Number of Cores Time (s)

(a) Time required for ADMM to reach 64% test accuracy
when parallelized over varying levels of cores.
on a GPU required 181 seconds, and conjugate gradients re-

(b) Test set predictive accur:

acy as a function of time for

L-BFGS ADMM on 7200 cores (blue), conjugate gradients (green),

quired 44 minutes. SGD never reached 64% accuracy.

and SGD (red). Note the x-axi:

s is scaled logarithmically.



Thank you!




