Wavelet Scattering Transforms

Haixia Liu

Department of Mathematics The Hong Kong University of Science and Technology

February 6, 2018

・ロト・日本・ モー・ モー うくの

Outline

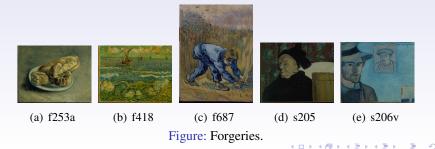
- Problem
 - Dataset
 - Problem
 - two subproblems
 - outline of image classification problem
- 2 Wavelet Scattering Transform
 - Review of Multiscale Wavelet Transform
 - Why Wavelets?
 - Wavelet Convolutional Networks
- Oigit Classification: MNIST by Joan Bruna et al.
- MATLAB code of Wavelet convolutional Networks

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Digit classification

▲□▶▲圖▶▲≣▶▲≣▶ = 差 - 釣�?

Digit classification


▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

- Translation
- Deformation

Dataset

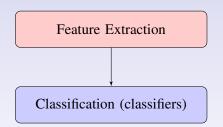
(a) f249 (b) f371 (c) f522 (d) f752 Figure: van Gogh's paintings.

The Problem

- 79 paintings authenticated by experts
- 64 genuine paintings and 15 forgeries
- Forgeries are 'quite' genuine with 6 historically wrongly attributed to van Gogh
- High-resolution professional images provided by van Gogh Museum and Kröller-Müller Museum
- Design an algorithm to determine if a painting is from van Gogh or NOT

(日)

Image classification can be contributed to the following two subproblems:


- Feature extraction (image processing),
 - Fourier Transform,
 - Wavelet,
 - EMD,
 - Tight frame
 - ...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Image classification can be contributed to the following two subproblems:

- Feature extraction (image processing),
 - Fourier Transform,
 - Wavelet,
 - EMD,
 - Tight frame
 - ...
- Clustering or classification (data analysis).
 - SVM,
 - HMM,
 - ...

Image Classification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Aims

AIM: Classify correctly although translation and deformation, i.e.,

- Globally invariant to the translation group
- Locally invariant to small deformation

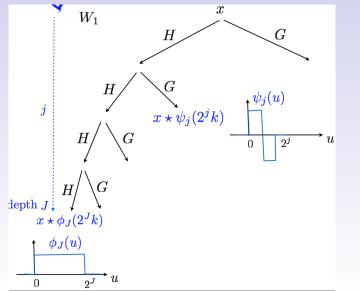
Wavelet Scattering Transform

▲□▶▲□▶▲□▶▲□▶ = のへぐ

Aims

AIM: Classify correctly although translation and deformation, i.e.,

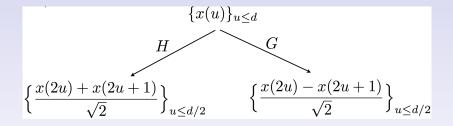
- Globally invariant to the translation group
- Locally invariant to small deformation


Wavelet Scattering Transform

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Some advantages of Wavelet Scattering Transform:

- Share hierarchical structure of DNNs
- replace data-driven filters by wavelets
- have strong theoretical support
- better performance for small-sample data


Haar wavelet transform

4日×4回×4回×4回×4回×<
</p>

900

Haar Filtering

$$Hx(u) = x * h(2u)$$
 and $Gx(u) = x * g(2u)$

(日)

э

where *h* is a low frequency and *g* is a high frequency.

Review of Multiscale Wavelet Transform

wavelet filters $\{\psi_{\lambda}\}_{\lambda}$

- Dilated Wavelets: $\psi_{\lambda}(t) = 2^{j}\psi(2^{j}t)$ with $\lambda = 2^{j}$.
- Multiscale and oritented wavelet filters

$$\psi_{\lambda} = 2^{j}\psi(2^{j}\theta x)$$

where $\theta \in \mathcal{R}(\mathbb{R}^2)$ be a rotation matrix and $\lambda = (2^j, \theta)$.

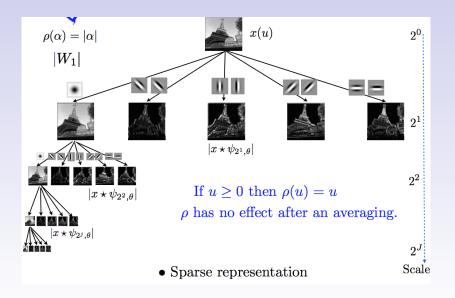
$$x * \psi_{\lambda}(\omega) = \int x(u)\psi_{\lambda}(\omega - u) \Rightarrow \widehat{x * \psi_{\lambda}}(\omega) = \widehat{x} \cdot \widehat{\psi_{\lambda}}$$

• Wavelet transform:

$$Wx = \begin{bmatrix} x * \phi_{2^{J}(t)} \\ x * \psi_{\lambda}(t) \end{bmatrix}_{\lambda \le 2^{-1}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Advantages of Wavelets


- Wavelets separate multiscale information
- Wavelets provide sparse representation
- Wavelets are uniformly stable to deformations. If $\psi_{\lambda,\tau} = \psi_{\lambda}(t - \tau(t))$, then

$$\|\psi_{\lambda} - \psi_{\lambda,\tau}\| \leq C \sup_{t} |\nabla \tau|$$

- Modulus improves invariance
- Fourier transform on translated function, modulus lead to translation invariance

$$|W|x = \begin{bmatrix} x * \phi_{2^{J}(t)} \\ |x * \psi_{\lambda}(t)| \end{bmatrix}_{\lambda \le 2^{J}}$$

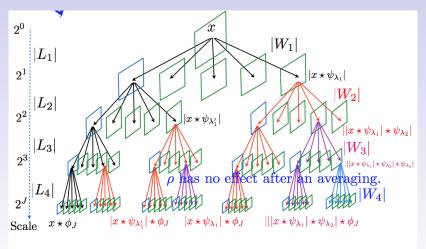
(日)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Scattering Coefficients

• first-layer scattering coefficients

$$S_{1,J}((\lambda_1),x) = |X * \psi_{\lambda_1}| * \phi_J(x)$$


• second-layer scattering coefficients

$$S_{2,J}((\lambda_1,\lambda_2),x) = ||X * \psi_{\lambda_1}| * \psi_{\lambda_2}| * \phi_J(x)$$

• *m*-th layer scattering coefficients

$$S_{2,J}((\lambda_1,\lambda_2,\cdots,\lambda_m),x) = ||X*\psi_{\lambda_1}|\cdots*\psi_{\lambda_m}|*\phi_J(x)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $S_4x = |L_4| |L_3| |L_2| |L_1|x = |W_4| |W_3| |W_2| |W_1| x$

Renormalization

$$\tilde{S}_{1,J}((\lambda_1)) = S_{1,J}((\lambda_1))$$

and

$$\tilde{S}_{2,J}((\lambda_1,\lambda_2)) = \frac{S_{2,J}((\lambda_1,\lambda_2))}{S_{1,J}((\lambda_1))}$$

Paper *Deep Scattering Spectrum* points out second coefficients can be decorrelated to increase their invariance through a renormalization.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Features based on Scattering Coefficients

One choice is to take spatial averages of scattering coefficients

$$\bar{S}_{m,J} = \sum_{x} \tilde{S}_{m,J}((\lambda_1,\cdots,\lambda_m),x).$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- dimension reduction
- destroy the spatial information contained in scattering coefficients

Classifiers

There are a lot of classifiers can be used if features are extracted

(日)

- Logistic regression
- Random forest
- SVM
- LDA
- Sparse SVM
- Sparse LDA
- and so on \cdots

Numerical results

Training	x		Wind. Four.		Scat. $m_{\text{max}} = 1$		Scat. $m_{\rm max} = 2$		Conv.
size	PCA	SVM	PCA	SVM	PCA	SVM	PCA	SVM	Net.
300	14.5	15.4	7.35	7.4	5.7	8	4.7	5.6	7.18
1000	7.2	8.2	3.74	3.74	2.35	4	2.3	2.6	3.21
2000	5.8	6.5	2.99	2.9	1.7	2.6	1.3	1.8	2.53
5000	4.9	4	2.34	2.2	1.6	1.6	1.03	1.4	1.52
10000	4.55	3.11	2.24	1.65	1.5	1.23	0.88	1	0.85
20000	4.25	2.2	1.92	1.15	1.4	0.96	0.79	0.58	0.76
40000	4.1	1.7	1.85	0.9	1.36	0.75	0.74	0.53	0.65
60000	4.3	1.4	1.80	0.8	1.34	0.62	0.7	0.43	0.53

Figure: Results from paper Invariant Scattering Convolution Networks

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Software

Code can be downloaded from

http://www.di.ens.fr/data/software/.

Thank you!!!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ● ● ●