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Tomaso Poggio’s group @CBMM, MIT
INn ~40 years of pursuit:

CBMM'’s focus is
the Science and the Engineering of Intelligence

We aim to make progress in understanding intelligence, that is
in understanding how the brain makes the mind, how the brain
works and how to build intelligent machines. We believe that
the science of intelligence will enable better engineering of

intelligence.
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CBMM: one of the motivations

Key recent advances
in the engineering of intelligence
have their roots
in basic research on the brain

It is time for
a theory of deep learning
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Deep Networks: Three theory questions

» Approximation Theory: When and why are deep
networks better than shallow networks?

* Optimization: What is the landscape of the empirical
risk?

 Learning Theory: How can deep learning not overfit?




Computation in a neural net
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Computation in a neural net

Rectified linear unit (RelLU)
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Gradient descent

argv{,nin Zﬁ(zi, f(xi;w)) = L(w)

One iteration of gradient de

(9L Wt\ L(w
Wt+1=Wt—?7t 8(W) (w)
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RELU approximatinion by univariate polynomial
preserves deep nets properties
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From now on, we study polynomial networks!



Deep and shallow networks: universality

Theorem Shallow, one-hidden layer networks with a nonlinear ¢(x) which
1s not a polynomial are universal. Arbitrarily deep networks with a nonlinear
o(x) (including polynomials) are universal.

P(x)= gci|< W;, X >+by|

X Xy X3 X, X5 Xg X; Xg X Xy X3 Xy X5 Xg X5 Xg

Cybenko, Girosi, ....



Classical learning theory and Kernel Machines
(Regularization in RKHS)

min 12 V(f(x)=y)+A ”f”i

i | £ £
implies

S0 =Y K(xx,)

Equation includes splines, Radial Basis Functions and Support Vector

Machines (depending on choice of V).

RKHS were explicitly introduced in learning theory by Girosi (1997), Vapnik (1998).

Moody and Darken (1989), and Broomhead and Lowe (1988) introduced RBF to learning theory. Poggio and
Girosi (1989) introduced Tikhonov regularization in learning theory and worked (implicitly) with RKHS. RKHS
were used earlier in approximation theory (eg Parzen, 1952-1970, Wahba, 1990). Mhaskar, Poggio, Liao, 2016



Classical kernel machines are equivalent to shallow networks

Kernel machines...

f(0) =N e K(xx,)+b

can be “written” as shallow networks: the
value of K corresponds to the “activity” of
the “unit” for the input and the
correspond to “weights”




Curse of dimensionality

y — f(x19x29°°°9x8)

Curse of dimensionality

Both shallow and deep network can approximate a function of d
variables equally well. The number of parameters in both cases

depends exponentiallyondas O(g™).

Mhaskar, Poggio, Liao, 2016




Generic functions

F(X X, X))

Compositional functions

f(xl s Xy a---,xg) — g3(g21(g11(x1,x2),g12(x3 s Xy ))gzz(gn(xs 9x6)9g12(x7 »Xg )



Hierarchically local compositionality

J %5500 X)) = 850851 (811 (315X5)5 815 (X35%4)) 82, (811 (X5, X6 ), 815 (X7,X5)))
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Theorem (informal statement)

Suppose that a function of d variables is hierarchically, locally, compositional . Both
shallow and deep network can approximate f equally well. The number of parameters of
the shallow network depends exponentially on d as O(e™) with the dimension
whereas for the deep network dance is O(de™)

EEEEEEEEE

Machines Mhaskar, Poggio, Liao, 2016



Historical Results

» A classical theorem [Sipser, 1986; Hastad, 1987] shows that deep circuits are
more efficient in representing certain Boolean functions than shallow circuits.
Hastad proved that highly-variable functions (in the sense of having high
frequencies in their Fourier spectrum) in particular the parity function cannot
even be decently approximated by small constant depth circuits

» The main result of [Telgarsky, 2016, Colt] says that there are functions with many
oscillations that cannot be represented by shallow networks with linear
complexity but can be represented with low complexity by deep networks.

» Older examples exist: consider a function which is a linear combination of n
tensor product Chui-Wang spline wavelets, where each wavelet is a tensor
product cubic spline. It was shown by Chui and Mhaskar that is impossible to
implement such a function using a shallow neural network with a sigmoidal
activation function using O(n) neurons, but a deep network with the activation
function (x, ) 2 do so. In this case, as we mentioned, there is a formal proof of a
gap between deep and shallow networks. Similarly, Eldan and Shamir show other
cases with separations that are exponential in the input dimension.



Microstructure of compositionality
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Locality of constituent functions is key: CIFAR
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Open problem: why compositional
functions are important for perceptione

®» They seem to occur in computations on text, speech, images...why?¢
» Conjecture (with) Max Tegmark

» The locality of the hamiltonians of physics induce compositionality in natural
signals such as images

» Oor

» The connectivity in our brain implies that our perception is limited to
compositional functions



Why are compositional

functions important? Locality of Computation

Which one of these reasons: What is special about Expanded Edition
Physics? locality of computation?
Neuroscience? <===

. Locality in “space”?

Perceptrons

Marvin L.. Minsky
Seymour A. Papert

Locality leads to Sparsity.



Deep Networks:Three theory questions

* Optimization: What is the landscape of the empirical
risk?

* Learning Theory: How can deep learning not overfit?




Theory ll:
What is the Landscape of the empirical risk?

Layer 5, Numbers are training errars

Observation 452107

2.5

Replacing the RELUs with univariate polynomial

approximation, Bezout theorem implies that the a9
system of polynomial equations corresponding to ll 8822
zero empirical error has a very large number of r 5948

degenerate solutions. The global zero-minimizers
correspond to flat minima in many dimensions
(generically, unlike local minima). Thus SGD is
biased towards finding global minima of the
empirical risk.
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Bezout theorem

p(x;)—y, =0 fori=1,...,n

The set of polynomial equations above with k= degree of p(x) has a number of
distinct zeros (counting points at infinity, using projective space, assigning an
appropriate multiplicity to each intersection point, and excluding degenerate
cases) equal to 7 = k"

the product of the degrees of each of the equations. As in the linear case, when
the system of equations is underdetermined — as many equations as data points
but more unknowns (the weights) — the theorem says that there are an infinite
number of global minima, under the form of Z regions of zero empirical error.

Machines



Global and local zeros

f(x;)=y, =0 fori=1,...,n n equations in W unknowns with W >>n
N

Vo Y (f(2:) —5:)*) =0 W equations in W unknowns
i=1

There are a very large number of zero-error minima which are highly degenerate unlike the local non-zero minima.
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Langevin equation

% = —y VV(f(0),2(t)+ 7', dB(t) frrr = fo = 1 VV (fi2e) + 7 We.

with the Boltzmann equation as asymptotic “solution”

1 _Ux)
~N— =80 r
p(f) ~
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DL~SGD is an analogy, NOT a Theorem!
SGD

fer1 = fo = VV(ft,2e), VV(ft,zt) = IZ_lr,I > zez, VV(ft,2)

We define a noise “equivalent quantity™

& = VV(ft,2e) — Vs, (ft),
and it is clear that E¢, = 0.

We write Equation 6 as

fee1 = fo =7 (Vis, (fe) + &)



GDL selects larger volume minima
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Histogram of w, for 1 D experiment
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GDL and SGD

SGDL
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Concentration because of high dimensionality

Histogram of wz for 2 D experiment

g8 88 §

Normalized Frequency

R

A |

0 2 4 8 10

6
Weights

Histogram of w’ for 5 D experiment

g8 &8 8

Normalized Frequency

R

Weights

praln

Minds
Machines

12

g & &

Normalized Frequency

R

Histogram of wz for 3 D experiment

-0.2

-0.4
g

-0.8

e °
o 3

Normalized Frequency
o
=

e
19

Histogram of Wz for 4 D experiment

Weights

i

T LI -

S ir;

">

waight W,

12



SGDL and SGD observation: summary

e SGDL finds with very high probability large volume, flat zero-minimizers; empirically SGD
behaves in a similar way

¢ Flat minimizers correspond to degenerate zero-minimizers and thus to global minimizers;
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Deep Networks:Three theory questions

* Approximation Theory: When and why are deep
networks better than shallow networks?

* Optimization: What is the landscape of the empirical
risk?

* Learning Theory: How can deep learning not overfit?




Problem of overfitting
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Deep Learning Puzzle

Optimum Model Complexity

Total Error

Variance

L

Model Complexity

>
>

Model Complexity

Models where p>20n are common

Deep
models



Deep Learning Puzzle: No Overfitting
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Poggio et al., 2017
Number of Model Params

Brains
Mind .. . . . .
Machines Explaining this figure is our main goal!




How to reduce generalization error?

* Model capacity
» Regularization (norms, dropout, etc.)
» Implicit regularization (early stopping)

- Data augmentation (fake data, crops, shifts, etc.)

All of these are sufficient but by no means necessary!




Ben Recht

by 4 CIFARIO

n=50,000

d=3,072
| k=10
What happens when | turn off the regularizers?

Train Test
Model parameters p/n loss  error
CudaConvNet 145,578 2.9 0 23%
CudaConvNet 145,578 2.9 0.34 | 8%
(with regularization)
Microlnception 1,649,402 33 0 | 4%
ResNet 2,401,440 48 0 | 3%




/hang et al. 2016 on Cifarl0
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Why do big models generalize!

This is true in the linear case too!

minimize ||y — Xwl||?
w

Xnxpn<p | .
Infinite number of global minima.

All global minima have the same Hessian.

At least p-n of the Hessian eigenvalues are zero.

Which one should we pick?

Regularize to leverage struture.

Sparsity Rank Smoothness Architecture




Why do we generalize when fitting the labels exactly?

Happens for linear models! | f(x) = w'x

minimize > (w/x; — y;)?

. minimize  ||w/|
SGD solution » subjectto  Xw =y

If you run SGD you find the minimum norm solution

) .@ o.
\‘ O\ .. ,O‘ \...‘/ .\/.

/
~t/.

When p>n, the algorithm is regularizing N



Implicit regularization by GD: #iterations controls A

Theorem 3.1 In the setting of Section 2, let Assumption 1 hold. Let vy € |0, 5‘1]. Then the following
hold:

(i) If we choose a stopping rule t*: N* — N* such that

t*(n)3logn _0

lim t*(n) =+o0cc and lim )
n—+oo n—+00 n
then
ngglooé' (Wee (m)) — ul)gf}{ E(w) =0 P-almost surely. (10)

(ii) Suppose additionally that the set O of minimizers of (1) is nonempty and let w' be defined as in
(2). If we choose a stopping rule t*: N* — N* satisfying the conditions in (9) then

[t (ny — w'||3g — O P-almost surely. (11)

Machines Rosasco, Vllla, 2015

For early stopping in general RKHSs: Yao, Rosasco, Caponnetto, 2007.



Implicit regularization by GD+SGD (linear case, no hidden layer)

-x1 xzocoo Xd_l Xd

Corollary 1. When initialized with zero, both GD and SGD converges to the minimum-norm
solution.

Min norm solution is the limit for A — Q of regularized solution



Resolving “flat” vs “sharp”

) minimize Y1 (W'x; — y;)?
~/ When p>n, all local minima have the same curvature.
at “flat minimizers?”
“shar/p”
minimize |||

—. . _
subjectto Xw =y W] ™" is the margin of the classifier

Small norm = loss is stable to perturbations in parameters
“flat minimizer”

Large norm = loss fluctuates with small perturbations to parameters
“sharp minimizer”



Margin in Classifications

...margin all over again

In statistical learning, when all population points are
classified correctly, one can show

Hf*”k
/n

Inverse margin divided by y/n

E[test error] < 4

Better rates achievable with worse constants.

3 )
E[test error] < O (@)



Deep linear network: GD as regularizer
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Minds GD regularizes deep linear networks as it does for linear networks
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Deep linear networks

Lemma 3. For gradient descent and stochastic gradient descent with any mini-batch size,
e any number of the iterations adds no element in Null(X ") to the rows of Wy, and hence

e if the rows of Wy has no element in Null(X ") at anytime (including the initialization),
the sequence converges to a minimum norm solution if it converges to a solution.

W,

Y

Lemma 4. If W5 # 0, every stationary point w.r.t. W1 is a global minimum.

CENTER FOR
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Deep nonlinear (degree 2) networks

Dynamical polynomial multilayer systems, training We now discuss an extension of the
above argument to the nonlinear activation case. Consider a polynomial second order (for sim-

plicity and w.l.g) activation function h(z) = az + b2z%. The dynamical system (see for notation

SI) is given by

W, = —2(aW, E + 2b[(W1X) o (WIE))XT (7)

and

Wy = —2[aEX "W +bE(W: X)*) ). (8)
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Linearized dynamics to study stable solutions

Sw, = =20wrY X T + 2007 WWy XX T 4 2W3 0w, Wy XX T +2W5 TW;ow, XXT

and similarly
Swy = —2Y X T + 20w, WYX X TWIT + 2W5 0w, XX TWY T + 2W5 WYX X Toyr.
I T
ow, = =20y 7Y X

If W small

Ow, = —2Y X by

. | Minds
| Machines



Deep nonlinear networks: conjecture

The conclusion about the extension to multilayer networks with
polynomial activation is thus similar to the linear case and can be
summarized as follows:

For low-noise data and a degenerate global minimum $W"*$, GD
on a polynomial multilayer network avoids overfitting without explicit
regularization, despite overparametrization.
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Three theory questions: summary

» Approximation theorems: for hierarchical compositional functions deep
but not shallow networks avoid the curse of dimensionality because of
locality of constituent functions

» Optimization remarks: Bezout theorem suggests many global minima
that are found by SGD with high probability wrt local minima

» Learning Theory results and conjectures: Unlike the case for a linear
network the data dictate - because of the regularizing dynamics of GD -
the number of effective parameters, which are in general fewer than the
number of weights.

: | Minds+
* | Machines



Thank you!




