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The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

Stats 385 Fall 2017

D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

A following-up course at HKUST: https://deeplearning-math.github.io/



Tomaso Poggio’s group @CBMM, MIT
in ~40 years of pursuit:

BCS VC meeting,  2017

We aim to make progress in understanding intelligence, that is 
in understanding how the brain makes the mind, how the brain 
works and how to build intelligent machines. We believe that 
the science of intelligence will enable better engineering of 

intelligence.

CBMM’s focus is 
the Science and the Engineering of Intelligence



Key recent advances  
in the engineering of intelligence   

have their roots  
in basic research on the brain

CBMM: one of the motivations

It is time for  
a theory of deep learning



Three Thery Questions

´ Approximation Theory: when and why are deep networks better than 
shallow ones?

´ Optimization: what are the landscapes of empirical risk?  

´ Learning theory: how deep net models can generalize well? 

• Approximation Theory: When and why are deep 
networks better than shallow networks? 

• Optimization: What is the landscape of the empirical 
risk? 

• Learning Theory: How can deep learning not overfit? 

 Deep Networks:Three theory questions
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RELU approximatinion by univariate polynomial 
preserves deep nets properties

From now on, we study polynomial networks!



Deep and shallow networks: universality

Cybenko, Girosi, ….

φ(x) = ci
i=1

r

∑ < wi , x > +bi +



When is deep better than shallow

Mhaskar, Poggio, Liao, 2016

Classical learning theory and Kernel Machines  
(Regularization in RKHS)

Equation includes splines, Radial Basis Functions and Support Vector 
Machines (depending on choice of V).  
RKHS were explicitly introduced in learning theory by Girosi (1997), Vapnik (1998).

Moody and Darken (1989), and Broomhead and Lowe (1988) introduced RBF to learning theory. Poggio and 
Girosi (1989) introduced Tikhonov regularization in learning theory and worked (implicitly) with RKHS. RKHS 
were used earlier in approximation theory (eg Parzen, 1952-1970, Wahba, 1990).
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can be “written” as  shallow networks: the 
value of K corresponds to the “activity” of 
the “unit” for the input and the     
correspond to “weights”
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Classical kernel machines are equivalent to shallow networks



When is deep better than shallow

Curse of dimensionality

Both shallow and deep network can approximate a function of d 
variables equally well. The  number of parameters in both cases 
depends  exponentially on d as               .  O(ε −d )

y = f (x1, x2,..., x8 )

Mhaskar, Poggio, Liao, 2016

Curse of dimensionality



When is deep better than shallow

f (x1, x2,..., x8 ) = g3(g21(g11(x1, x2 ),g12 (x3, x4 ))g22 (g11(x5, x6 ),g12 (x7, x8 )))

Generic functions

Mhaskar, Poggio, Liao, 2016

f (x1, x2,..., x8 )

Compositional functions



When is deep better than shallow

Theorem (informal statement)

Suppose that a function of d variables is hierarchically, locally, compositional . Both 
shallow and deep network can approximate f equally well. The  number of parameters of 
the shallow network depends  exponentially on d as               with the dimension 
whereas for the deep network dance is   

O(ε −d )
O(dε −2 )

f (x1, x2,..., x8 ) = g3(g21(g11(x1, x2 ),g12 (x3, x4 ))g22 (g11(x5, x6 ),g12 (x7, x8 )))

Mhaskar, Poggio, Liao, 2016

Hierarchically local compositionality



Historical Results
´ A classical theorem [Sipser, 1986; Hastad, 1987] shows that deep circuits are 

more efficient in representing certain Boolean functions than shallow circuits. 
Hastad proved that highly-variable functions (in the sense of having high 
frequencies in their Fourier spectrum) in particular the parity function cannot 
even be decently approximated by small constant depth circuits 

´ The main result of [Telgarsky, 2016, Colt] says that there are functions with many 
oscillations that cannot be represented by shallow networks with linear 
complexity but can be represented with low complexity by deep networks. 

´ Older examples exist: consider a function which is a linear combination of n 
tensor product Chui–Wang spline wavelets, where each wavelet is a tensor 
product cubic spline. It was shown by Chui and Mhaskar that is impossible to 
implement such a function using a shallow neural network with a sigmoidal 
activation function using O(n) neurons, but a deep network with the activation 
function (x+ ) 2 do so. In this case, as we mentioned, there is a formal proof of a 
gap between deep and shallow networks. Similarly, Eldan and Shamir show other 
cases with separations that are exponential in the input dimension. 
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Microstructure of compositionality
target function

approximating 
function/network



Locality of constituent functions is key: CIFAR



Open problem: why compositional 
functions are important for perception?

´ They seem to occur in computations on text, speech, images...why? 

´ Conjecture (with) Max Tegmark
´ The locality of the hamiltonians of physics induce compositionality in natural 

signals such as images 

´ or 

´ The connectivity in our brain implies that our perception is limited to 
compositional functions 



Why are compositional 
functions important?

Which one of these reasons: 
Physics? 

Neuroscience? <=== 
Evolution?

What is special about 
locality of computation?


Locality in “space”? 

Locality in “time”?

Locality of Computation

Among the most challenging scientific questions of our time are the 
corresponding analytic and synthetic problems:  How does the brain function? 
 Can we design a machine which will simulate a brain?
-- Automata Studies, 1956

Alan Turing John von Neumann Marvin Minsky John McCarthy

Artificial Intelligence

Locality leads to Sparsity.



• Approximation Theory: When and why are deep 
networks better than shallow networks? 

• Optimization: What is the landscape of the empirical 
risk? 

• Learning Theory: How can deep learning not overfit? 

 Deep Networks:Three theory questions



When is deep better than shallow

Observation

Liao, Poggio, 2017

Theory II:  
What is the Landscape of the empirical risk?

Replacing the RELUs with univariate polynomial 
approximation, Bezout theorem implies that the 
system of polynomial equations corresponding to  
zero empirical error has a very large number of 
degenerate solutions. The global zero-minimizers 
correspond to flat minima in many dimensions 
(generically, unlike local minima). Thus SGD is 
biased towards finding global minima of the 
empirical risk.



 
Bezout theorem

The set of polynomial equations above with k= degree of p(x) has a number of 
distinct zeros (counting points at infinity, using projective space, assigning an 
appropriate multiplicity to each intersection point, and excluding degenerate 
cases) equal to 

the product of the degrees of each of the equations. As in the linear case, when 
the system of equations is underdetermined – as many equations as data points 
but more unknowns (the weights) – the theorem says that there are an infinite 
number of global minima, under the form of Z regions of zero empirical error.

Z = kn

p(xi )− yi = 0  for i = 1,...,n



f (xi )− yi = 0  for i = 1,...,n

 
Global and local zeros

n equations in W  unknowns with W >> n

W  equations in W  unknowns



 
Langevin equation

with the Boltzmann equation as asymptotic “solution”

df
dt

= −γ t∇V ( f (t), z(t)+ γ 't dB(t)

p( f ) ~ 1
Z
= e

−U (x )
T



DL~SGD is an analogy, NOT a Theorem!

When is deep better than shallow 
SGD



 
GDL selects larger volume minima



 
GDL and SGD



 
Concentration because of high dimensionality



When is deep better than shallow

• SGDL finds with very high probability  large volume, flat zero-minimizers; empirically SGD 
behaves in a similar way 

• Flat minimizers correspond to degenerate zero-minimizers and thus to global minimizers;  

SGDL and SGD observation: summary

Poggio, Rakhlin, Golovitc, Zhang, Liao, 2017 



• Approximation Theory: When and why are deep 
networks better than shallow networks? 

• Optimization: What is the landscape of the empirical 
risk? 

• Learning Theory: How can deep learning not overfit? 

 Deep Networks:Three theory questions



Problem of overfitting

Regularization or similar to control overfitting



Deep Learning Puzzle

Deep  
models

Models where p>20n are common



Deep Learning Puzzle: No Overfitting No overfitting!

Explaining this figure is our main goal!

Poggio et al., 2017



• Model capacity

• Regularization (norms, dropout, etc.)

• Implicit regularization (early stopping)

• Data augmentation (fake data, crops, shifts, etc.)

All of these are sufficient but by no means necessary!

How to reduce generalization error?



n=50,000
d=3,072
k=10

CIFAR10

Model parameters p/n
Train 
loss

Test 
error

CudaConvNet 145,578 2.9 0 23%

CudaConvNet
(with regularization)

145,578 2.9 0.34 18%

MicroInception 1,649,402 33 0 14%

ResNet 2,401,440 48 0 13%

What happens when I turn off the regularizers?

Ben Recht



Zhang et al. 2016 on Cifar10

MicroInception

n=50,000
d=3,072
k=10
p=1,649,402



Why do big models generalize?
• This is true in the linear case too!

X n x p, n<p
• Infinite number of global minima. 
• All global minima have the same Hessian.
• At least p-n of the Hessian eigenvalues are zero.

• Which one should we pick?
• Regularize to leverage struture.

minimize
w

�y � Xw�2

Sparsity Rank Smoothness Architecture



• Why do we generalize when fitting the labels exactly?
• Happens for linear models!

SGD solution

minimize
�n

i=1(w
Txi � yi)2

minimize �w�
subject to Xw = y
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If you run SGD you find the minimum norm solution

f(x) = wTx

When p>n, the algorithm is regularizing



Implicit regularization by GD: #iterations controls λ

Rosasco, Villa, 2015

For early stopping in general RKHSs: Yao, Rosasco, Caponnetto, 2007.



Implicit regularization by GD+SGD (linear case, no hidden layer)

W

∑

x1   x2....  xd−1   xd
W = YX †

Min norm solution is the limit for                  of regularized solutionλ→ 0



Resolving “flat” vs “sharp”

minimize �w�
subject to Xw = y

minimize
�n

i=1(w
Txi � yi)2

When p>n, all local minima have the same curvature.

�w��1 is the margin of the classifier

Small norm ⇒ loss is stable to perturbations in parameters

Large norm ⇒ loss fluctuates with small perturbations to parameters
“sharp minimizer”

“flat minimizers?”
“sharp”

“flat”

“flat minimizer”



Margin in Classifications

…margin all over again
• In statistical learning, when all population points are 

classified correctly, one can show

E[test error] � 4�f��k�
n

Inverse margin divided by 
�
n

• Better rates achievable with worse constants.

E[test error] � Õ
�

�f��2
k

n

�



 Deep linear network: GD as regularizer

GD regularizes deep linear networks as it does for linear networks



W1

W2

 Deep linear networks

Remark:                           implies redundant parameters that are controlled if null space is emptyW2W1 = A



 Deep nonlinear (degree 2) networks



 Linearized dynamics to study stable solutions

    If       smallW *



 Deep nonlinear networks: conjecture

The conclusion about the extension to multilayer networks with 
polynomial activation is thus similar to the linear case and can be 
summarized as follows: 

For low-noise data and a degenerate global minimum $W^*$, GD 
on a polynomial multilayer network avoids overfitting without explicit 

regularization, despite overparametrization.  



• Approximation theorems: for hierarchical compositional functions deep 
but not shallow networks avoid the curse of dimensionality because of 
locality of constituent functions 

• Optimization remarks: Bezout theorem suggests many global minima 
that are found by SGD with high probability wrt local minima 

• Learning Theory results and conjectures: Unlike the case for a linear 
network the data dictate - because of the regularizing dynamics of GD - 
the number of effective parameters, which are in general fewer than the 
number of weights. 

 Three theory questions: summary



Thank you!


