Summary: Wavelet Scattering Net

» Architechture:
» Convolutional filters: band-limited wavelets
» Nonlinear activation: modulus (Lipschitz)
» Pooling: L1 norm as averaging
» Properties:
» A Multiscale Sparse Representation
» Norm Preservation (Parseval’'s identity):
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Invariants/Stability of Scattering Net

» Translation Invariance:
e The average |z x ¥y, | * ¢(¢) is invariant to small translations

relatively to the support of ¢.

e Full translation invariance at the limit:

lim @ % a, | * (L) = / |z * Y, (w)] du = [l x Py, [lx

» Stable Small Deformations:

stable to deformations x.(t) = x(t — 7(t))
S5 sl M ) =]



Feature Extraction

m""‘ Linearized Classification Ed:

Joan Bruna
e Fach class Xy is represented by a scattering centroid E(SXy)

Affine space model Ay = E(SXy) + V. computed with PCA.
E(SX>)
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Invariants to translations Invariants to specific deformations

Linearises small deformations Separates different patterns
No learning

Classification Errors

Training size | Conv. Net. Scattering
50000 0.4% 0.4%
LeCun et. al.
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Rotation and Scaling Invariance _ =y

Laurent Sifre

UIUC database: | ‘
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Scattering classification errors
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L; is composed of convolutions and subs samplings:

2, ky) = p(25 (k) % s ()

No channel communication: what limitations 7



- Deep Convolutional Networks !n'i
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Xy = ,OLJ Zj—-1

e [, is a linear combination of convolutions and subsampling:
7 ky) = p( D w1 (k) b ()
k
sum across channels

What is the role of channel connections 7

Linearize other symmetries beyond translations.
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| ;@;;&_Rotation Invariance

e Channel connections linearize other symmetries.
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e Invariance to rotations are computed by convolutions

along the rotation variable § with wavelet filters.

= invariance to rigid mouvements.



. Wavelet Transform on a Group ﬂ

Laurent Sifre
e Roto-translation group G = {g = (r,t) € SO(2) x R?}

(r,t) . z(u) = z(r ' (u—1t))

e Averagingon G: X ®6(g) = | X(¢) (g ~'g)dg’

e Wavelet transform on G: W)X = ( X ®_¢(g) ) .
X @ ¢>\2 (g> >\2’g

translation roto-translation

T — ‘Wl‘ — |x*¢2jr(t)|: Xj(’r', t) — |W2‘ _’|XJ ®E)\2(T7t)|
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. Wavelet Transform on a Group

Laurent Sifre

e Roto-translation group G = {g = (r,t) € SO(2) x R?}

(r,t) . 2x(u) = z(r *(u—1t))

o Averaging on G: X @ ¢(g) = /G X(g) (g 'g)dg’

e Wavelet transform on G: W)X = ( X ® ¢(g) ) .
A2,9

X ® E)\g (9)

scalo-roto-translation
+ renormalization
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Rotation and Scaling Invariance ﬂj

Laurent Sifre
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Wiatowski-Bolcskel' 15

» Scattering Net by Mallat et al. so far
» Wavelet Linear filter
= Nonlinear activation by modulus
» Average pooling
» Generalization by Wiatowski-Bolcskei’ 15
» Filters as frames
» | jpschitz continuous Nonlinearities

» General Pooling: Max/Average/Nonlinear, etc.



Generalization of Wiatowski-Bolcskel’' 15

Scattering networks ([Mallat, 2012], [Wiatowski and HB, 2015])
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General scattering networks guarantee [Wiatowski & HB, 2015]
- (vertical) translation invariance
- small deformation sensitivity

essentially irrespective of filters, non-linearities, and poolings!



Wavelet basis -> filter frame

Building blocks

Basic operations in the n-th network layer

/ 9\® t non-lin. H pool.
/

\ 9\t non-lin. (H pool.

Filters: Semi-discrete frame ¥,, := {x,} U {gx, }r,cA,

ANFIZ < = xall3 + D If *gnall” < Ballfl3,  Vf € L*(RY)
An€A,L

e.g.. Structured filters

NZEEESNIN



Frames: random or learned filters

Building blocks

Basic operations in the n-th network layer

/

f

AN

9\® t non-lin. H pool.
950 HH non-lin. H pool.

Filters: Semi-discrete frame W, := {x»} U {gx, }r,eA,

AallfIB < N *+xall3+ Do If gl < Ball£I13, VS € LARY)
An€n

e.g.: Unstructured filters

RS

Building blocks

Basic operations in the n-th network layer

/ 9\® I non-lin. H pool.

f

\ 950 H non-lin. H pool.

Filters: Semi-discrete frame ¥y, := {xn} U {ga, }r.cA,,

AllFIB < IF*xald+ D F g l? < BullflI3, VS € LARY
A €EAn

e.g.: Learned filters



Nonlinear activations

Building blocks

Basic operations in the n-th network layer

/

f
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non-lin.

pool.
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non-lin.

pool.

Non-linearities: Point-wise and Lipschitz-continuous

[Mn(f) = Mn(h)ll2 < Lallf = hll2,

Y f,h e L*(RY)

= Satisfied by virtually all non-linearities used
in the deep learning literature!

ReLU: L,, = 1; modulus: L, = 1; logistic sigmoid: L, = i;



PooliNg  Building blocks

Basic operations in the n-th network layer

/ 9\® I non-lin. H pool.
/

\ 9\ 4 non-lin. (H pool.

Pooling: In continuous-time according to
S Sg/2pn(f)(5n‘)a
where S,, > 1 is the pooling factor and P, : L?(R%) — L?(R%) is
R,,-Lipschitz-continuous
= Emulates most poolings used in the deep learning literature!
e.g.: Pooling by sub-sampling P, (f) = f with R, =1

e.g.: Pooling by averaging P,(f) = f * ¢, with R, = ||¢n ][,



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy
B, <min{l,L,*R?}, VnecN.

Let the pooling factors be S, > 1, n € N. Then,
o770 — ()l = o =1,
S1...5,
for all f € L>(RY), t € R, n € N.

The condition
B, <min{l,L%2R%}, VneN,

is easily satisfied by normalizing the filters {gx, }x, e,



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy
B, <min{l,L?R.?}, VneN.
Let the pooling factors be S,, > 1, n € N. Then,
ll0"(f) - (Dl = O 510 ),
S1...8,
for all f € L?(RY), t € R, n € N.

= Features become more invariant with increasing network depth!

=

=



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy
B, <min{l,L,*R;?}, VYnecN.

Let the pooling factors be S, > 1, n € N. Then,
87T — e ()l = o AL,
Sy....5,
for all f € L>(RY), t € R, n € N.

Full translation invariance: If lim S;-S5y-...-5,, = o0, then
n—oo

lim [[9"(T,f) — ®"(f)]]| = 0



Philosophy behind invariance results

Mallat's “horizontal” translation invariance [Mallat, 2012]:

Jim ||®w (Tef) — @w(f)ll| =0, Vf € L*A(R?), vt € R

- features become invariant in every network layer, but needs
J — o0

- applies to wavelet transform and modulus non-linearity without
pooling

“Vertical” translation invariance:

Tim_|||e™(Tef) — (Nl =0, VfeL*R?),VteR

- features become more invariant with increasing network depth

- applies to general filters, general non-linearities, and general
poolings



Non-linear deformations

Non-linear deformation (F, f)(z) = f(x — 7(z)), where 7 : R¢ — R?

For “small’ 7:

S




Non-linear deformations

Non-linear deformation (F, f)(z) = f(z — 7(z)), where 7 : R — R?

For “large” T:

L g2




Deformation sensitivity for signal classes

2

Consider (F-f)(x) = f(x —7(x)) = f(x —e™™")

fil@), (F-fi)(x)

T

fo(x), (Fr f2)(x)

il x

For given 7 the amount of deformation induced
can depend drastically on f € L?(R9)




Wiatowski-Bolcskel’ 15 Deformation Stability
Bounds

Philosophy behind deformation stability/sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]:

l1@w (Frf) — 2w (NI £ C(27|I7lloo + NI DT [loo + | D7 loo) | f 1w,
for all f € Hy C L%*(RY)

- The signal class Hyy and the corresponding norm || - || depend
on the mother wavelet (and hence the network)

Our deformation sensitivity bound:

lI2(F-f) = (P < Celi7lls,  VF €€ < L*(RY)

- The signal class C (band-limited functions, cartoon functions, or
Lipschitz functions) is independent of the network



Wiatowski-Bolcskel’ 15 Deformation Stability
Bounds

Philosophy behind deformation stability /sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]:

llew (£ f) = 2w (Il < C27I7lloc + TIDT oo + |1 D*7lloc ) | fllw
for all f € Hyy C L?(RY)

- Signal class description complexity implicit via norm || - ||w

Our deformation sensitivity bound:

[1@(F-f) = (NI < Celi7llse,  VF €€ S L*(R)

- Signal class description complexity explicit via C¢
- L-band-limited functions: Ce = O(L)
- cartoon functions of size K: Cp = O(K?/?)
- M-Lipschitz functions C¢c = O(M)



Philosophy behind deformation stability /sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]:
12w (Frf) = 2w (NIl < C 27 I7lloo + N1 D7 lloo + D7 lloo) 1 £ 1w
for all f € Hy C L?(R%)

- The bound depends explicitly on higher order derivatives of

Our deformation sensitivity bound:

I|®(F-f) — ®(f)l]| < Cell7||%, VfeCC L*(RY

- The bound implicitly depends on derivative of 7 via the
condition [|D7||s0 < 54



Philosophy behind deformation stability /sensitivity bounds

Mallat's deformation stability bound [Mallat, 2012]:
12w (Frf) — 2w (Il < C(27 I7lloo + TIIDT oo + 1 D7 llso) | fllw,
for all f € Hyy C L?(R?)

- The bound is coupled to horizontal translation invariance

T [[|ow (Tif) = @w ()l =0,  Vf e L*(R?), vt e R

Our deformation sensitivity bound:
[|@(Frf) — @(f)lll < CelTll%,  VfeCc LR
- The bound is decoupled from vertical translation invariance

Tim [[|[@"(Tf) - @"(Hlll=0, V¥fe L*(RY), vt e R’



%;_ .Deep Convolutional Networks !n'i

:EJukJ

pL J classification

.....

 The convolution network operators L; have many roles:
- Linearize non-linear transformations (symmetries)
- Reduce dimension with projections
- Memory storage of « characteristic » structures

« Difficult to separate these roles when analyzing learned networks



Open Problems =

UkJ

pL J classification

» Can we recover symmetry groups from the matrices Lj ?
e What kind of groups ?
e Can we characterise the regularity of f(x) from these groups ?

e Can we define classes of high-dimensional « regular » functions
that are well approximated by deep neural networks ?

» Can we get approximation theorems giving errors depending on
number of training exemples, with a fast decay ?



