
Summary: Wavelet Scattering Net

´ Architechture:
´ Convolutional filters: band-limited wavelets

´ Nonlinear activation: modulus (Lipschitz) 

´ Pooling: L1 norm as averaging 

´ Properties:
´ A Multiscale Sparse Representation

´ Norm Preservation (Parseval’s identity):

´ Contraction: 
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contractive kSx� Syk  kx� yk

preserves norms kSxk = kxk

stable to deformations x⌧ (t) = x(t� ⌧(t))

kSx� Sx⌧k  C sup
t

|r⌧(t)| kxk

) linear discriminative classification from �x = Sx

      Scattering  Properties

Theorem: For appropriate wavelets, a scattering is
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.
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      Wavelet Filter Bank
x(u)⇢(↵) = |↵|

• Sparse representation

|x ?  2j ,✓|

If u � 0 then ⇢(u) = u

⇢ has no e↵ect after an averaging.



Invariants/Stability of Scattering Net

´ Translation Invariance:

´ Stable Small Deformations:

• The modulus |x ?  �1 | is a regular envelop

|x ?  �1 | ? �(t)

• The average |x ?  �1 | ? �(t) is invariant to small translations

relatively to the support of �.

lim
�!1

|x ?  �1 | ? �(t) =
Z

|x ?  �1(u)| du = kx ?  �1k1

    Wavelet Translation Invariance



Feature Extraction



LeCun et. al.

Classification Errors

Joan Bruna

 Digit Classification: MNIST

SJx y = f(x)
x

Supervised
Linear classifier

Invariants to specific deformations

Separates di↵erent patterns

Invariants to translations

Linearises small deformations

No learning

Training size Conv. Net. Scattering

50000 0.4% 0.4%



Other Invariants?
General Convolutional 
Neural Networks?



UIUC database:
25 classes

Scattering classification errors

Training Scat. Translation

20 20 %

  Rotation and Scaling Invariance

Laurent Sifre



x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

 Deep Convolutional  Trees

⇢L1
⇢LJ

xj = ⇢Lj xj�1

classification

Lj is composed of convolutions and subs samplings:

xj(u, kj) = ⇢

⇣
xj�1(·, k) ? hkj ,k(u)

⌘

No channel communication: what limitations ?
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 Deep Convolutional Networks

⇢L1
⇢LJ

xj = ⇢Lj xj�1

xj(u, kj) = ⇢

⇣X

k

xj�1(·, k) ? hkj ,k(u)
⌘

sum across channels

classification

• Lj is a linear combination of convolutions and subsampling:

What is the role of channel connections ?

Linearize other symmetries beyond translations.



     Rotation Invariance
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x ? �J
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• Channel connections linearize other symmetries.

• Invariance to rotations are computed by convolutions

along the rotation variable ✓ with wavelet filters.

) invariance to rigid mouvements.



Xj ~ �(r, t)

|Xj ~  �2
(r, t)|

• Averaging on G: X ~ �(g) =
Z

G
X(g0) �(g

0�1g) dg0

• Wavelet transform on G: W2X =
✓

X ~ �(g)
X ~ ⇥�2

(g)

◆

�2,g

.
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    Wavelet Transform on a Group

x

x ? �(t)

|x ?  2jr(t)|

translation roto-translation

= Xj(r, t)

(r, t) . x(u) = x(r�1(u� t))

• Roto-translation group G = {g = (r, t) 2 SO(2)⇥ R2}
Laurent Sifre



X ~ �(2j , r, t)

|X ~  �2
(2j , r, t)|

• Averaging on G: X ~ �(g) =
Z

G
X(g0) �(g

0�1g) dg0

• Wavelet transform on G: W2X =
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    Wavelet Transform on a Group

x

x ? �(t)

|x ?  2jr(t)|

translation

scalo-roto-translation

= X(2j , r, t)
+ renormalization

(r, t) . x(u) = x(r�1(u� t))

• Roto-translation group G = {g = (r, t) 2 SO(2)⇥ R2}
Laurent Sifre



UIUC database:
25 classes

Scattering classification errors

Training Translation Transl + Rotation + Scaling

20 20 % 2% 0.6%

  Rotation and Scaling Invariance

Laurent Sifre



Wiatowski-Bolcskei’15

´ Scattering Net by Mallat et al. so far
´ Wavelet Linear filter

´ Nonlinear activation by modulus

´ Average pooling

´ Generalization by Wiatowski-Bolcskei’15
´ Filters as frames

´ Lipschitz continuous Nonlinearities

´ General Pooling: Max/Average/Nonlinear, etc.



Generalization of Wiatowski-Bolcskei’15

Scattering networks ([Mallat, 2012 ], [Wiatowski and HB, 2015 ])
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General scattering networks guarantee [Wiatowski & HB, 2015 ]

- (vertical) translation invariance

- small deformation sensitivity

essentially irrespective of filters, non-linearities, and poolings!



Wavelet basis -> filter frame

´

Building blocks

Basic operations in the n-th network layer

f
...

g
�

(r)
n non-lin. pool.

g
�

(k)
n non-lin. pool.

Filters: Semi-discrete frame  
n
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} [ {g
�n}�n2⇤n

A
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n
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X

�n2⇤n

kf ⇤ g
�nk2  B

n

kfk22, 8f 2 L2
(Rd

)

e.g.: Structured filters

e.g.: Learned filters



Frames: random or learned filters

Building blocks

Basic operations in the n-th network layer
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e.g.: Learned filters

Building blocks

Basic operations in the n-th network layer
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e.g.: Unstructured filters

e.g.: Learned filters



Nonlinear activations
Building blocks

Basic operations in the n-th network layer

f
...

g
�

(r)
n non-lin. pool.

g
�

(k)
n non-lin. pool.

Non-linearities: Point-wise and Lipschitz-continuous

kM
n

(f)�M
n

(h)k2  L
n

kf � hk2, 8 f, h 2 L2
(Rd

)

) Satisfied by virtually all non-linearities used
in the deep learning literature!

ReLU: L
n

= 1; modulus: L
n

= 1; logistic sigmoid: L
n

=

1
4 ; ...



Pooling Building blocks

Basic operations in the n-th network layer

f
...

g
�

(r)
n non-lin. pool.

g
�

(k)
n non-lin. pool.

Pooling: In continuous-time according to

f 7! Sd/2
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n

·),
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� 1 is the pooling factor and P
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R

n

-Lipschitz-continuous

) Emulates most poolings used in the deep learning literature!

e.g.: Pooling by sub-sampling P
n

(f) = f with R
n

= 1

Building blocks

Basic operations in the n-th network layer

f
...

g
�

(r)
n non-lin. pool.

g
�

(k)
n non-lin. pool.

Pooling: In continuous-time according to

f 7! Sd/2
n

P
n

(f)(S
n

·),
where S

n

� 1 is the pooling factor and P
n

: L2
(Rd

) ! L2
(Rd

) is
R

n

-Lipschitz-continuous
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e.g.: Pooling by sub-sampling P
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Building blocks

Basic operations in the n-th network layer
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) Emulates most poolings used in the deep learning literature!

e.g.: Pooling by averaging P
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(f) = f ⇤ �
n

with R
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= k�
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k1



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

B
n

 min{1, L�2
n

R�2
n

}, 8n 2 N.

Let the pooling factors be S
n

� 1, n 2 N. Then,

|||�n
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(f)||| = O
✓ ktk
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◆

,
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), t 2 Rd, n 2 N.

The condition

B
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R�2
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}, 8n 2 N,

is easily satisfied by normalizing the filters {g
�n}�n2⇤n .



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

B
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) Features become more invariant with increasing network depth!



Vertical translation invariance

Theorem (Wiatowski and HB, 2015)

Assume that the filters, non-linearities, and poolings satisfy

B
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Full translation invariance: If lim
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Philosophy behind invariance results

Mallat’s “horizontal” translation invariance [Mallat, 2012 ]:

lim

J!1
|||�

W

(T
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f)� �

W

(f)||| = 0, 8f 2 L2
(Rd

), 8t 2 Rd

- features become invariant in every network layer, but needs
J ! 1

- applies to wavelet transform and modulus non-linearity without
pooling

“Vertical” translation invariance:

lim

n!1
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t

f)� �
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(f)||| = 0, 8f 2 L2
(Rd

), 8t 2 Rd

- features become more invariant with increasing network depth

- applies to general filters, general non-linearities, and general
poolings



Non-linear deformations

Non-linear deformation (F
⌧

f)(x) = f(x� ⌧(x)), where ⌧ : Rd ! Rd

For “small” ⌧ :



Non-linear deformations

Non-linear deformation (F
⌧

f)(x) = f(x� ⌧(x)), where ⌧ : Rd ! Rd

For “large” ⌧ :



Deformation sensitivity for signal classes

Consider (F
⌧

f)(x) = f(x� ⌧(x)) = f(x� e�x

2
)

x

f1(x), (F⌧f1)(x)

x

f2(x), (F⌧f2)(x)

For given ⌧ the amount of deformation induced
can depend drastically on f 2 L2

(Rd

)



Wiatowski-Bolcskei’15 Deformation Stability 
Bounds

Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound [Mallat, 2012 ]:

|||�
W

(F
⌧

f)��

W

(f)|||  C
�

2

�Jk⌧k1+JkD⌧k1+kD2⌧k1
�kfk

W

,

for all f 2 H
W

✓ L2
(Rd

)

- The signal class H
W

and the corresponding norm k · k
W

depend
on the mother wavelet (and hence the network)

Our deformation sensitivity bound:

|||�(F
⌧

f)� �(f)|||  CCk⌧k↵1, 8f 2 C ✓ L2
(Rd

)

- The signal class C (band-limited functions, cartoon functions, or
Lipschitz functions) is independent of the network



Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound [Mallat, 2012 ]:
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- Signal class description complexity implicit via norm k · k
W

Our deformation sensitivity bound:

|||�(F
⌧

f)� �(f)|||  CCk⌧k↵1, 8f 2 C ✓ L2
(Rd

)

- Signal class description complexity explicit via CC
- L-band-limited functions: CC = O(L)
- cartoon functions of size K: CC = O(K3/2

)

- M -Lipschitz functions CC = O(M)

Wiatowski-Bolcskei’15 Deformation Stability 
Bounds



Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound [Mallat, 2012 ]:
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- The bound depends explicitly on higher order derivatives of ⌧

Our deformation sensitivity bound:

|||�(F
⌧

f)� �(f)|||  CCk⌧k↵1, 8f 2 C ✓ L2
(Rd

)

- The bound implicitly depends on derivative of ⌧ via the
condition kD⌧k1  1

2d



Philosophy behind deformation stability/sensitivity bounds

Mallat’s deformation stability bound [Mallat, 2012 ]:
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- The bound is coupled to horizontal translation invariance
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Our deformation sensitivity bound:
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- The bound is decoupled from vertical translation invariance
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x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

 Deep Convolutional Networks

⇢L1
⇢LJ classification

• The convolution network operators       have many roles: 
– Linearize non-linear transformations (symmetries)  
– Reduce dimension with projections 
– Memory storage of « characteristic » structures 

• Difficult to separate these roles when analyzing learned networks

Lj



x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

             Open Problems

⇢L1
⇢LJ classification

• Can we recover symmetry groups from the matrices  Lj ? 
• What kind of groups ? 
• Can we characterise the regularity of  f(x)  from these groups ? 
• Can we define classes of high-dimensional « regular » functions 

that are well approximated by deep neural networks ? 
• Can we get approximation theorems giving errors depending on 

number of training exemples, with a fast decay ? 


