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Image Classification

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Example Dataset: CIFAR10

18

 Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes
50,000 training images
10,000 testing images

Example Dataset: Fashion MNIST
28x28 grayscale images
60,000 training and 10,000 test examples
10 classes

Jason WU, Peng XU, and Nayeon LEE



The Challenge of Human-Instructing-
Computers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

This image by Nikita is 
licensed under CC-BY 2.0

The Problem: Semantic Gap

7

What the computer sees

An image is just a big grid of 
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)



Complex Invariance
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Challenges: Deformation

10

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0

This image by Tom Thai is 
licensed under CC-BY 2.0 

This image by sare bear is 
licensed under CC-BY 2.0

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0
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Challenges: Viewpoint variation

8

All pixels change when 
the camera moves!

This image by Nikita is 
licensed under CC-BY 2.0

Euclidean transform

Large scale deformation



Complex Invariance
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Challenges: Illumination
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This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain
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This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Occlusion
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This image is CC0 1.0 public domain This image by jonsson is licensed 
under CC-BY 2.0This image is CC0 1.0 public domain
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Challenges: Intraclass variation
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This image is CC0 1.0 public domain



Data Driven Learning of the invariants:
linear discriminant/classification
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Recall from last time: Linear Classifier

7

f(x,W) = Wx + b



(Empirical) Loss or Risk Function
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

A loss function tells how 
good our current classifier is

Given a dataset of examples

Where       is image and 
                  is (integer) label

Loss over the dataset is a 
sum of loss over examples:



Hing Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201712

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

“Hinge loss”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201717

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Loss over full dataset is average:

Losses: 12.92.9 0 L = (2.9 + 0 + 12.9)/3 
   = 5.27
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Given an example
where        is the image and
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and using the shorthand for the 
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Cross Entropy (Negative Log-likelihood)
Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201746

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities

normalize
0.13
0.87
0.00

probabilities

L_i = -log(0.13)
      = 0.89



Loss + Regularization
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Data loss: Model predictions 
should match training data

Regularization: Model 
should be “simple”, so it 
works on test data

Occam’s Razor: 
“Among competing hypotheses, 
the simplest is the best”
William of Ockham, 1285 - 1347



Regularizations

´ Explicit regularization
´ L2-regularization

´ L1-regularization (Lasso)

´ Elastic-net (L1+L2)

´ Max-norm regularization

´ Implicit regularization
´ Dropout

´ Batch-normalization

´ Earlystopping
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 2017

Regularization

34

= regularization strength
(hyperparameter)

In common use: 
L2 regularization
L1 regularization
Elastic net (L1 + L2)
Max norm regularization (might see later)
Dropout (will see later)
Fancier: Batch normalization, stochastic depth



Hyperparameter (Regularization) Tuning
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Recall from last time: data-driven approach, kNN
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1-NN classifier 5-NN classifier

train test

train testvalidation

Data rich:

Data poverty: cross-validation

5.2. Cross validation

K-fold cross validation
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Figure: 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE
estimates.

Chapter 5 February 27, 2018 27 / 53
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Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

How do we find the best W?

In regression, square loss is often used instead.



Optimization Methods to find minima
of the Loss Landscape?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201756
Walking man image is CC0 1.0 public domain



Gradient Descent Method
Introduction

Introduction

Gradient descent is a way to minimize an objective function J(✓)
✓ 2 Rd : model parameters
⌘: learning rate
r✓J(✓): gradient of the objective function with regard to the
parameters

Updates parameters in opposite direction of gradient.
Update equation: ✓ = ✓ � ⌘ ·r✓J(✓)

Figure: Optimization with gradient descent

Sebastian Ruder Optimization for Deep Learning 24.11.17 3 / 49



Gradient Descent Variants

´ Batch Gradient Descent

´ Stochastic Gradient Descent

´ Mini-batch Gradient Descent

´ Difference: how much data we use in computing the gradients



Batch Gradient Descent

´ Computes gradient with the entire dataset

´ Update rule: 

Gradient descent variants Batch gradient descent

Batch gradient descent

Computes gradient with the entire dataset.

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓)

for i in range(nb_epochs ):

params_grad = evaluate_gradient(

loss_function , data , params)

params = params - learning_rate * params_grad

Listing 1: Code for batch gradient descent update

Sebastian Ruder Optimization for Deep Learning 24.11.17 5 / 49
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´ Pros:
´ Guaranteed to converge to global minimum for convex objective function and 

to a stationary/critical point for non-convex ones. 

´ Exponentially fast (linear) convergence rates in strongly convex landscape

´ Sublinear convergence rates in convex landscape

´ Cons:
´ Slow in big data.

´ Intractable for big datasets that do not fit in memory. 

´ No online learning. 



Stochastic Gradient Descent

´ Computes update for each example (x(i), y(i)), usually uniformly sampled 
from the training dataset

´ Update equation: 

´ The expectation of stochastic gradient is the batch gradient

Gradient descent variants Stochastic gradient descent

Stochastic gradient descent

Computes update for each example x

(i)
y

(i).

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓; x (i); y (i))

for i in range(nb_epochs ):

np.random.shuffle(data)

for example in data:

params_grad = evaluate_gradient(

loss_function , example , params)

params = params - learning_rate * params_grad

Listing 2: Code for stochastic gradient descent update

Sebastian Ruder Optimization for Deep Learning 24.11.17 7 / 49
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´ Pros:
´ Guaranteed to converge to global minimum for convex losses and to a local 

optima for non-convex ones, may escape saddle points polynomially fast 

´ O(1/k) convergence rates in convex losses, possibly dimension-free

´ Much faster than batch in big data

´ Online learning algorithms

´ Cons:
´ High variance in gradients and outcomes

Gradient descent variants Stochastic gradient descent

Pros
Much faster than batch gradient descent.
Allows online learning.

Cons
High variance updates.

Figure: SGD fluctuation (Source: Wikipedia)

Sebastian Ruder Optimization for Deep Learning 24.11.17 8 / 49



Batch GD vs. Stochastic GD

´ SGD shows same convergence behaviour as batch gradient descent if 
learning rate is slowly decreased (annealed) over time. 

Gradient descent variants Stochastic gradient descent

Batch gradient descent vs. SGD fluctuation

Figure: Batch gradient descent vs. SGD fluctuation (Source: wikidocs.net)

SGD shows same convergence behaviour as batch gradient descent if
learning rate is slowly decreased (annealed) over time.

Sebastian Ruder Optimization for Deep Learning 24.11.17 9 / 49



Mini-batch Gradient Descent

´ Performs update for every mini-batch of random n examples. 

´ Update equation: 

´ The expectation of gradient is the same as the batch gradient

Gradient descent variants Mini-batch gradient descent

Mini-batch gradient descent

Performs update for every mini-batch of n examples.

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓; x (i :i+n); y (i :i+n))

for i in range(nb_epochs ):

np.random.shuffle(data)

for batch in get_batches(data , batch_size =50):

params_grad = evaluate_gradient(

loss_function , batch , params)

params = params - learning_rate * params_grad

Listing 3: Code for mini-batch gradient descent update

Sebastian Ruder Optimization for Deep Learning 24.11.17 10 / 49
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´ Pros
´ Reduces variance of updates.

´ Can exploit matrix multiplication primitives. 

´ Cons
´ Mini-batch size is a hyperparameter. Common sizes are 50-256. 

´ Typically the algorithm of choice.

´ Usually referred to as SGD in deep learning even when mini-batches are 
used. 



Gradient descent variants Mini-batch gradient descent

Method Accuracy
Update
Speed

Memory
Usage

Online
Learning

Batch
gradient descent

Good Slow High No

Stochastic
gradient descent

Good (with
annealing)

High Low Yes

Mini-batch
gradient descent

Good Medium Medium Yes

Table: Comparison of trade-o↵s of gradient descent variants

Sebastian Ruder Optimization for Deep Learning 24.11.17 12 / 49



Challenges

´ Choosing a learning rate.

´ Defining an annealing (learning rate decay) schedule. 

´ Escaping saddles and suboptimal minima. 



Variants of Gradient Descent Algorithms

´ Momentum 

´ Nesterov accelerated gradient 

´ Adagrad

´ Adadelta

´ RMSprop

´ Adam 

´ Adam extensions 



Momentum
Gradient descent optimization algorithms Momentum

Momentum

SGD has trouble navigating ravines.
Momentum [Qian, 1999] helps SGD accelerate.
Adds a fraction � of the update vector of the past step vt�1 to
current update vector vt . Momentum term � is usually set to 0.9.

vt = �vt�1 + ⌘r✓J(✓)

✓ = ✓ � vt
(1)

(a) SGD without momentum (b) SGD with momentum

Figure: Source: Genevieve B. Orr

Sebastian Ruder Optimization for Deep Learning 24.11.17 15 / 49



Gradient descent optimization algorithms Momentum

Reduces updates for dimensions whose gradients change
directions.

Increases updates for dimensions whose gradients point in the
same directions.

Figure: Optimization with momentum (Source: distill.pub)

Sebastian Ruder Optimization for Deep Learning 24.11.17 16 / 49



Nesterov Accelerated GradientGradient descent optimization algorithms Nesterov accelerated gradient

Nesterov accelerated gradient

Momentum blindly accelerates down slopes: First computes
gradient, then makes a big jump.
Nesterov accelerated gradient (NAG) [Nesterov, 1983] first makes a
big jump in the direction of the previous accumulated gradient
✓ � �vt�1. Then measures where it ends up and makes a correction,
resulting in the complete update vector.

vt = � vt�1 + ⌘r✓J(✓ � �vt�1)

✓ = ✓ � vt
(2)

Figure: Nesterov update (Source: G. Hinton’s lecture 6c)

Sebastian Ruder Optimization for Deep Learning 24.11.17 17 / 49



Adagrad
Gradient descent optimization algorithms Adagrad

Adagrad

Previous methods: Same learning rate ⌘ for all parameters ✓.
Adagrad [Duchi et al., 2011] adapts the learning rate to the
parameters (large updates for infrequent parameters, small updates
for frequent parameters).
SGD update: ✓t+1 = ✓t � ⌘ · gt

gt = r✓tJ(✓t)

Adagrad divides the learning rate by the square root of the sum of
squares of historic gradients.
Adagrad update:

✓t+1 = ✓t �
⌘p

Gt + ✏
� gt (3)

Gt 2 Rd⇥d : diagonal matrix where each diagonal element i , i is the
sum of the squares of the gradients w.r.t. ✓i up to time step t

✏: smoothing term to avoid division by zero
�: element-wise multiplication

Sebastian Ruder Optimization for Deep Learning 24.11.17 18 / 49



´ Pros
´ Well-suited for dealing with sparse data. 

´ Significantly improves robustness of SGD. 

´ Lesser need to manually tune learning rate. 

´ Cons
´ Accumulates squared gradients in denominator. 

´ Causes the learning rate to shrink and become infinitesimally small. 



Adadelta
Gradient descent optimization algorithms Adadelta

Adadelta

Adadelta [Zeiler, 2012] restricts the window of accumulated past
gradients to a fixed size. SGD update:

�✓t = �⌘ · gt
✓t+1 = ✓t +�✓t

(4)

Defines running average of squared gradients E [g2]t at time t:

E [g2]t = �E [g2]t�1 + (1� �)g2
t (5)

�: fraction similarly to momentum term, around 0.9

Adagrad update:

�✓t = � ⌘p
Gt + ✏

� gt (6)

Preliminary Adadelta update:

�✓t = � ⌘p
E [g2]t + ✏

gt (7)

Sebastian Ruder Optimization for Deep Learning 24.11.17 20 / 49



Gradient descent optimization algorithms Adadelta

�✓t = � ⌘p
E [g2]t + ✏

gt (8)

Denominator is just root mean squared (RMS) error of gradient:

�✓t = � ⌘

RMS [g ]t
gt (9)

Note: Hypothetical units do not match.
Define running average of squared parameter updates and RMS:

E [�✓2]t = �E [�✓2]t�1 + (1� �)�✓2t

RMS [�✓]t =
q
E [�✓2]t + ✏

(10)

Approximate with RMS [�✓]t�1, replace ⌘ for final Adadelta update:

�✓t = �RMS [�✓]t�1

RMS [g ]t
gt

✓t+1 = ✓t +�✓t

(11)

Sebastian Ruder Optimization for Deep Learning 24.11.17 21 / 49



RMSprop
Gradient descent optimization algorithms RMSprop

RMSprop

Developed independently from Adadelta around the same time by
Geo↵ Hinton.

Also divides learning rate by a running average of squared
gradients.

RMSprop update:

E [g2]t = �E [g2]t�1 + (1� �)g2
t

✓t+1 = ✓t �
⌘p

E [g2]t + ✏
gt

(12)

�: decay parameter; typically set to 0.9
⌘: learning rate; a good default value is 0.001

Sebastian Ruder Optimization for Deep Learning 24.11.17 22 / 49



Adam

Gradient descent optimization algorithms Adam

Adam

Adaptive Moment Estimation (Adam) [Kingma and Ba, 2015] also
stores running average of past squared gradients vt like Adadelta
and RMSprop.

Like Momentum, stores running average of past gradients mt .

mt = �1mt�1 + (1� �1)gt

vt = �2vt�1 + (1� �2)g
2
t

(13)

mt : first moment (mean) of gradients
vt : second moment (uncentered variance) of gradients
�1,�2: decay rates

Sebastian Ruder Optimization for Deep Learning 24.11.17 23 / 49



Gradient descent optimization algorithms Adam

mt and vt are initialized as 0-vectors. For this reason, they are biased
towards 0.

Compute bias-corrected first and second moment estimates:

m̂t =
mt

1� �t
1

v̂t =
vt

1� �t
2

(14)

Adam update rule:

✓t+1 = ✓t �
⌘p

v̂t + ✏
m̂t (15)

Sebastian Ruder Optimization for Deep Learning 24.11.17 24 / 49



Adam Extensions

Gradient descent optimization algorithms Adam extensions

Adam extensions

1 AdaMax [Kingma and Ba, 2015]
Adam with `1 norm

2 Nadam [Dozat, 2016]
Adam with Nesterov accelerated gradient

Sebastian Ruder Optimization for Deep Learning 24.11.17 25 / 49



Update Equations
Gradient descent optimization algorithms Update equations

Update equations

Method Update equation

SGD
gt = r✓tJ(✓t)
�✓t = �⌘ · gt
✓t = ✓t +�✓t

Momentum �✓t = �� vt�1 � ⌘gt
NAG �✓t = �� vt�1 � ⌘r✓J(✓ � �vt�1)

Adagrad �✓t = � ⌘p
Gt + ✏

� gt

Adadelta �✓t = �RMS [�✓]t�1

RMS [g ]t
gt

RMSprop �✓t = � ⌘p
E [g2]t + ✏

gt

Adam �✓t = � ⌘p
v̂t + ✏

m̂t

Table: Update equations for the gradient descent optimization algorithms.

Sebastian Ruder Optimization for Deep Learning 24.11.17 26 / 49



Visualization of algorithms
Gradient descent optimization algorithms Comparison of optimizers

Visualization of algorithms

(a) SGD optimization on loss surface
contours

(b) SGD optimization on saddle point

Figure: Source and full animations: Alec Radford

Sebastian Ruder Optimization for Deep Learning 24.11.17 27 / 49



Comparisons

´ Adaptive learning rate methods (Adagrad, Adadelta, RMSprop, Adam) are 
particularly useful for sparse features. 

´ Adagrad, Adadelta, RMSprop, and Adam work well in similar 
circumstances. 

´ [Kingma and Ba, 2015] show that bias-correction helps Adam slightly 
outperform RMSprop. 



Parallel and Distributed SGD

´ Hogwild! [Niu et al., 2011] 
´ Parallel SGD updates on CPU 

´ Shared memory access without parameter lock Only works for sparse input data 

´ Downpour SGD [Dean et al., 2012]
´ Multiple replicas of model on subsets of training data run in parallel 

´ Updates sent to parameter server; 

´ updates fraction of model parameters 

´ Delay-tolerant Algorithms for SGD [Mcmahan and Streeter, 2014] 
´ Methods also adapt to update delays 

´ TensorFlow [Abadi et al., 2015]
´ Computation graph is split into a subgraph for every device 

´ Communication takes place using Send/Receive node pairs 

´ Elastic Averaging SGD [Zhang et al., 2015]
´ Links parameters elastically to a center variable stored by parameter server 



Additional Strategies for SGD

´ Shuffling and Curriculum Learning [Bengio et al., 2009] 
´ Shuffle training data after every epoch to break biases 

´ Order training examples to solve progressively harder problems; infrequently used in 
practice 

´ Batch normalization [Ioffe and Szegedy, 2015]
´ Re-normalizes every mini-batch to zero mean, unit variance 

´ Must-use for computer vision 

´ Early stopping
´ “Early stopping (is) beautiful free lunch” (Geoff Hinton) 

´ Gradient noise [Neelakantan et al., 2015] 
´ Add Gaussian noise to gradient 

´ Makes model more robust to poor initializations 

´ Escape saddles or local optima



Adam vs. Tuned SGD 

´ Many recent papers use SGD with learning rate annealing.

´ SGD with tuned learning rate and momentum is competitive with Adam 
[Zhang et al., 2017b].

´ Adam converges faster, but oscillates and may underperform SGD on 
some tasks, e.g. Machine Translation [Wu et al., 2016]. 

´ Adam with restarts and SGD-style annealing converges faster and 
outperforms SGD [Denkowski and Neubig, 2017]. 

´ Increasing the batch size may have the same effect as decaying the 
learning rate [Smith et al., 2017]. 
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