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Image Classification

Examp|e Dataset: CIFAR10 Example Dataset: Fashion MNIST

28x28 grayscale images

60,000 training and 10,000 test examples
10 classes 10 classes

50,000 training images indox °o 1 2 3 4 5 & 1 8 o
10,000 testing images
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Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.
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The Challenge of Human-Ins

omputers

The Problem: Semantic Gap

This image by Nikita is
licensed under CC-BY 2.0
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What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)




Complex Invariance

Challenges: Viewpoint variation

=

Euclidean transform

All pixels change when
the camera moves!

Challenges: Deformation

Large scale deformation




Complex Invariance

Challenges: lllumination Challenges: Background Clutter




Data Driven Learning of the invariants:
linear discriminant/classification

- f(x W) ——» 10 numbers giving f(X,W) — WX + b

class scores

Array of 32x32x3 numbers T N
(3072 numbers total) W _—
==

parameters s
or weights
Stretch pixels into column

Image

car classifier

) 56
02 | -05| 0.1 | 2.0 1.1 -96.8 | Cat score
231
15 | 1.3 | 21 | 0.0 + 3.2 | = | 4379 | Dog score
24
o 0 |025| 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2
plane car

bird cat




(Empirical) Loss or Risk Function

Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W) =Wz are:

A loss function tells how
good our current classifier is

Given a dataset of examples
N
{(2s, yi) Fiza

Where ;. is image and
Y; is (integer) label

Loss over the dataset is a
sum of loss over examples:

L= % ZLz‘(f(xz'v W), yi)



“Hinge loss’

Hing Loss

Sjl

Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:B,,;, y,,;)
where g, is the image ana
where g, is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

cat 3_2 1 3 29 the SVM loss has the form:

car 5.1 4.9 2.5 Li:Z{O if sy, > 5+ 1
iz 85 = Syt 1 otherwise

lg 1.7 20 34 v

Losses: 2.9 0 12.9 b



Cross Entropy (Negative Log-likelihood)

LOSS

Softmax Classifier (Multinomial Logistic Regression)

cat 3.2
car 5.1
frog -1.7

exp

Li = —log(5£5)
unnormalized probabilities
24.5 0.13 |~ L_i="-log(0.13)
normalize =0.89
164.0— | 0.87
0.18 0.00
probabilities

unnormalized log probabilities



Loss + Regularization

L E L CL',,,, ) y@) i )\R(W)
\ J J
Y Y
Data loss: Model predictions Regularization: Model
should match training data should be “simple”, so it

works on test data

Occam’s Razor:

“Among competing hypotheses,
the simplest is the best”

William of Ockham, 1285 - 1347




Regularizations

» Explicit regularization
» | 2-regularization R(W) — Ek El W?ii
» | ]-regularization (Lasso) R(W) = Ek Zz | Wl
= Elastic-net (L1+L2) RW)=>", ElﬁWﬁl + Wiy
= Max-norm regularization
» |mplicit regularization
®» Dropout
» Bafch-normalization

» Farlystopping




Hyperparameter (Regularization) Tuning

Data rich:

train test

train validation test

Data poverty: cross-validation
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Recap How do we find the best W?

- We have some dataset of (x,y)

e.g.
- We have a score function: s = f(z;W) =Wz

- We have a loss function:

Softmax

L; = — log(=
g ij”) SVM

Li =), max(0,s; — sy, +1)

L=%Y", L+ R(W) Fullloss

In regression, square loss is often used instead.

regularization loss

score function |-
—_—

—

1

f(-Ti,. W)

data loss
. I, ‘

L




Optimization Methods to find minimao
of the Loss Landscape?




Gradient Descent Method

@ Gradient descent is a way to minimize an objective function J(6)
o 0 € RY: model parameters
e 7: learning rate
o VyJ(0): gradient of the objective function with regard to the
parameters
@ Updates parameters in opposite direction of gradient.

o Update equation: 8 =0 —n - VyJ(0)

A

J(0)

local) minimum

>
»

0" 6

Figure: Optimization with gradient descent



Gradient Descent Variants

Batch Gradient Descent
Stochastic Gradient Descent
Mini-batch Gradient Descent

Difference: how much data we use in computing the gradients



Batch Gradient Descent

» Computes gradient with the entire dataset

» Update rule: 0 — 9 . 77 . VQJ(H)

for i in range(nb_epochs):
params_grad = evaluate_gradient (
loss_function, data, params)
params = params - learning_rate * params_grad

Listing 1: Code for batch gradient descent update



Pros:

» Guaranteed to converge to global minimum for convex objective function and
to a stationary/critical point for non-convex ones.

» Exponentially fast (linear) convergence rates in strongly convex landscape
» Sublinear convergence rates in convex landscape
Cons:

= Slow in big data.

» |ntractable for big datasets that do not fit in memory.

= No online learning.



Stochastic Gradient Descent

= Computes update for each example (x(, y(l), usually uniformly sampled
from the training dataset

» Update equation:
B =0—n-VedO; x1); y

» The expectation of stochastic gradient is the batch gradient

for i in range(nb_epochs):
np.random.shuffle (data)
for example in data:

params_grad = evaluate_gradient (
loss_function, example, params)
params = params - learning_rate * params_grad

Listing 2: Code for stochastic gradient descent update



» Pros:

» Guaranteed to converge to global minimum for convex losses and to a local
optima for non-convex ones, may escape saddle points polynomially fast

» O(1/k) convergence rates in convex losses, possibly dimension-free
» Much faster than batch in big data

» Online learning algorithms

» Cons: s

» High variance in gradients and outcomes

-0
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Figure: SGD fluctuation (Source: Wikipedia)



Batch GD vs. Stochastic GD

» SGD shows same convergence behaviour as batch gradient descent if
learning rate is slowly decreased (annealed) over time.

m—

Figure: Batch gradient descent vs. SGD fluctuation (Source: wikidocs.net)



Mini-batch Gradient Descent

» Performs update for every mini-batch of random n examples.

» Update equation:
0 —0— n - VQJ(Q, X(i:i—l—n); y(i:i—l—n))
» The expectation of gradient is the same as the batch gradient
for i in range(nb_epochs):

np.random.shuffle (data)
for batch in get_batches(data, batch_size=50):

params_grad = evaluate_gradient (
loss_function, batch, params)
params = params - learning_rate * params_grad

Listing 3: Code for mini-batch gradient descent update



Pros

» Reduces variance of updates.

» Can exploit matrix multiplication primitives.
Cons

» Mini-batch size is a hyperparameter. Common sizes are 50-256.
Typically the algorithm of choice.

Usually referred to as SGD in deep learning even when mini-batches are
used.



Update Memory Online
Method Accuracy Speed Usage Learning
Batch Good Slow  High No
gradient descent
Stoc?hastlc Good (.thh High Low Ves
gradient descent  annealing)
Mini-batch Good Medium  Medium Yes

gradient descent

Table: Comparison of trade-offs of gradient descent variants



Challenges

» Choosing a learning rate.
» Defining an annealing (learning rate decay) schedule.

®» Escaping saddles and suboptimal minima.



Variants of Gradient Descent Algorithms

Momentum

Nesterov accelerated gradient
Adagrad

Adadelta

RMSprop

Adam

Adam extensions



Momentum

@ SGD has trouble navigating ravines.

@ Momentum [Qian, 1999] helps SGD accelerate.

@ Adds a fraction v of the update vector of the past step v;_; to
current update vector v;. Momentum term - is usually set to 0.9.

Ve = yvi—1 +nVeJ(0) (1)

0=0— Vit
(a) SGD without momentum (b) SGD with momentum

Figure: Source: Genevieve B. Orr



@ Reduces updates for dimensions whose gradients change
directions.

@ Increases updates for dimensions whose gradients point in the
same directions.

(%) starting Point

—

Optimum

Iﬁﬂun

Figure: Optimization with momentum (Source: distill.pub)



Nesterov Accelerated Gradient

@ Momentum blindly accelerates down slopes: First computes
gradient, then makes a big jump.

@ Nesterov accelerated gradient (NAG) [Nesterov, 1983] first makes a
big jump in the direction of the previous accumulated gradient
6 — yvt_1. Then measures where it ends up and makes a correction,
resulting in the complete update vector.

Ve =5 Ve—1 +nVeJ(0 — yvi_1)
0=0— Vit

-

Figure: Nesterov update (Source: G. Hinton's lecture 6c¢)

(2)



Adagrad

@ Previous methods: Same learning rate 7 for all parameters 6.
@ Adagrad [Duchi et al., 2011] adapts the learning rate to the
parameters (large updates for infrequent parameters, small updates

for frequent parameters).
@ SGD update: 0;11 =60 — 1 - gt
@ 8 — V@t./(et)

@ Adagrad divides the learning rate by the square root of the sum of

squares of historic gradients.
@ Adagrad update:

Ui
Ori1 = 0 — —— O gy (3)
vV Gt + €
o G, € RY%9: diagonal matrix where each diagonal element i, i is the
sum of the squares of the gradients w.r.t. 6; up to time step t
e ¢: smoothing term to avoid division by zero
e (©: element-wise multiplication



» Pros
» Well-suited for dealing with sparse data.
» Significantly improves robustness of SGD.
» | esser need to manually fune learning rate.
= Cons
» Accumulates squared gradients in denominator.

» Causes the learning rate to shrink and become infinitesimally small.



Adadelta

o Adadelta [Zeiler, 2012] restricts the window of accumulated past
gradients to a fixed size. SGD update:
Aby = —n - gt
Orr1 = 0 + AG;

e Defines running average of squared gradients E[g?]; at time t:

Elg®]e = vElg¥e-1 + (1 — 7)g?

e ~: fraction similarly to momentum term, around 0.9

@ Adagrad update:

U
ANy =——L @
t Ge T < 8t

@ Preliminary Adadelta update:

(5)

(6)

(7)



NGy = —— 1 (8)

VEET e

@ Denominator is just root mean squared (RMS) error of gradient:

A@t -

n
_W[g]tgt (9)

@ Note: Hypothetical units do not match.
@ Define running average of squared parameter updates and RMS:

E[A0?]; = vE[AO?]i—1 + (1 — ) AH?

RMS[A], = 1/ E[A62], + ¢ (10)

@ Approximate with RMS[A6];_1, replace 1 for final Adadelta update:
RMS[AQ]{_—_:[

RMS[g], (11)
Orr1 = 0 + AD;

A@t:—




RMSprop

@ Developed independently from Adadelta around the same time by
Geoff Hinton.

@ Also divides learning rate by a running average of squared
gradients.

@ RMSprop update:

Elg®]: = vE[g®)e-1 + (1 — 7)g?
n (12)

T VEET

9t—|—1 — ‘9t

e : decay parameter; typically set to 0.9
e 1): learning rate; a good default value is 0.001



Adam

e Adaptive Moment Estimation (Adam) [Kingma and Ba, 2015] also

stores running average of past squared gradients v; like Adadelta
and RMSprop.

@ Like Momentum, stores running average of past gradients m;.

my = Bime—1 + (1 — 51)8:
Ve = Bove—1 + (1 — 52)8%2

(13)
o my: first moment (mean) of gradients

o v;: second moment (uncentered variance) of gradients
e (31, >: decay rates



@ m; and v; are initialized as O-vectors. For this reason, they are biased
towards O.

@ Compute bias-corrected first and second moment estimates:

A mt
mg =
1—pt
~ Vit 1 (14)
Vi = 1 ﬁé_
@ Adam update rule:
(9t_|_]_ — Ht - Lflht (15)



Adam Extensions

@ AdaMax [Kingma and Ba, 2015]

e Adam with /5, norm

@ Nadam [Dozat, 2016]

e Adam with Nesterov accelerated gradient



Update Equations

Method Update equation
g: = Vy,J(0:)
01- — 01- + A@t
Momentum Af; = —v vi_1 — ng:
NAG AOy = —~ Vtﬁl —nVed(0 — yvi_1)
Adagrad NGy = — ®
g | R /\C/;fsfrAee] 3
Adadelt NGy = — -
o T RMSlgl
RMSprop Ab; = — g
t \/57[32]t te

Adam AQt = —

me

V0 +e




Visualization of algorithms

SGD
Momentum

SGD
NAG S -  Momentum
Adagrad y == NAG
Adadelta S — Adagrad
i
Adadelta
4 Rmsprop

e,
PRI R R T
oty
R
SRR
N,

g)ntsoilr)s optimization on loss surface (b) SGD optimization on saddle point

Figure: Source and full animations: Alec Radford



Comparisons

» Adapftive learning rate methods (Adagrad, Adadelta, RMSprop, Adam) are
particularly useful for sparse features.

» Adagrad, Adadelta, RMSprop, and Adam work well in similar
circumstances.

= [Kingma and Ba, 2015] show that bias-correction helps Adam slightly
outperform RMSprop.



Parallel and Distributed SGD

= Hogwild! [Niu et al., 2011]
» Parallel SGD updates on CPU
» Shared memory access without parameter lock Only works for sparse input data
» Downpour SGD [Dean et al., 2012]
»  Multiple replicas of model on subsets of training data run in parallel
» Updates sent to parameter server;
» ypdates fraction of model parameters
» Delay-tolerant Algorithms for SGD [Mcmahan and Streeter, 2014]
» Methods also adapt to update delays
» TensorFlow [Abadi et al., 2015]
= Computation graph is split info a subgraph for every device
» Communication takes place using Send/Receive node pairs
» Flastic Averaging SGD [Zhang et al., 2015]

» |inks parameters elastically to a center variable stored by parameter server



Additional Strategies tor SGD

Shuffling and Curriculum Learning [Bengio et al., 2009]
» Shuffle fraining data after every epoch to break biases

» QOrder training examples to solve progressively harder problems; infrequently used in
practice

Batch normalization [loffe and Szegedy, 2015]
» Re-normalizes every mini-batch to zero mean, unit variance
» Must-use for computer vision
Early stopping
» “Farly stopping (is) beautiful free lunch™ (Geoff Hinton)
Gradient noise [Neelakantan et al., 2015]
» Add Gaussian noise to gradient
» Makes model more robust to poor initializations

» FEscape saddles or local optima



Adam vs. Tuned SGD

» Many recent papers use SGD with learning rate annealing.

» SGD with tuned learning rate and momentum is competitive with Adam
[Zhang et al., 2017b].

» Adam converges faster, but oscillates and may underperform SGD on
some tasks, e.g. Machine Translation [Wu et al., 2016].

» Adam with restarts and SGD-style annealing converges faster and
outperforms SGD [Denkowski and Neubig, 2017].

® |ncreasing the batch size may have the same effect as decaying the
learning rate [Smith et al., 2017].
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Thank you!




