
An Introduction to Optimization
Methods in Deep Learning

Yuan YAO

HKUST

1

Acknowledgement

´ Feifei Li, Stanford cs231n

´ Ruder, Sebastian (2016). An overview of gradient descent optimization
algorithms. arXiv:1609.04747.
´ http://ruder.io/deep-learning-optimization-2017/

Image Classification

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Example Dataset: CIFAR10

18

 Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes
50,000 training images
10,000 testing images

Example Dataset: Fashion MNIST
28x28 grayscale images
60,000 training and 10,000 test examples
10 classes

Jason WU, Peng XU, and Nayeon LEE

The Challenge of Human-Instructing-
Computers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

This image by Nikita is
licensed under CC-BY 2.0

The Problem: Semantic Gap

7

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)

Complex Invariance

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Deformation

10

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

This image by Tom Thai is
licensed under CC-BY 2.0

This image by sare bear is
licensed under CC-BY 2.0

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Viewpoint variation

8

All pixels change when
the camera moves!

This image by Nikita is
licensed under CC-BY 2.0

Euclidean transform

Large scale deformation

Complex Invariance

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Illumination

9

This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 201712

This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Occlusion

11

This image is CC0 1.0 public domain This image by jonsson is licensed
under CC-BY 2.0This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Intraclass variation

13

This image is CC0 1.0 public domain

Data Driven Learning of the invariants:
linear discriminant/classification

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 2017

Recall from last time: Linear Classifier

7

f(x,W) = Wx + b

(Empirical) Loss or Risk Function

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201710

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores are:

A loss function tells how
good our current classifier is

Given a dataset of examples

Where is image and
 is (integer) label

Loss over the dataset is a
sum of loss over examples:

Hing Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201712

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores are:

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

“Hinge loss”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201717

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores are:

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

Loss over full dataset is average:

Losses: 12.92.9 0 L = (2.9 + 0 + 12.9)/3
 = 5.27

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201711

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores are:

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

Cross Entropy (Negative Log-likelihood)
Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201746

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities

normalize
0.13
0.87
0.00

probabilities

L_i = -log(0.13)
 = 0.89

Loss + Regularization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201733

Data loss: Model predictions
should match training data

Regularization: Model
should be “simple”, so it
works on test data

Occam’s Razor:
“Among competing hypotheses,
the simplest is the best”
William of Ockham, 1285 - 1347

Regularizations

´ Explicit regularization
´ L2-regularization

´ L1-regularization (Lasso)

´ Elastic-net (L1+L2)

´ Max-norm regularization

´ Implicit regularization
´ Dropout

´ Batch-normalization

´ Earlystopping
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 2017

Regularization

34

= regularization strength
(hyperparameter)

In common use:
L2 regularization
L1 regularization
Elastic net (L1 + L2)
Max norm regularization (might see later)
Dropout (will see later)
Fancier: Batch normalization, stochastic depth

Hyperparameter (Regularization) Tuning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 2017

Recall from last time: data-driven approach, kNN

6

1-NN classifier 5-NN classifier

train test

train testvalidation

Data rich:

Data poverty: cross-validation

5.2. Cross validation

K-fold cross validation

!"#"$""%"

!!"&'"(""")&"

!!"&'"(""")&"

!!"&'"(""")&"!!"&'"(""")&"

!!"&'"(""")&"

!!"&'"(""")&"

Figure: 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE
estimates.

Chapter 5 February 27, 2018 27 / 53

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201753

Recap
- We have some dataset of (x,y)
- We have a score function:
- We have a loss function:

e.g.

Softmax

SVM

Full loss

How do we find the best W?

In regression, square loss is often used instead.

Optimization Methods to find minima
of the Loss Landscape?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 3 - April 11, 201756
Walking man image is CC0 1.0 public domain

Gradient Descent Method
Introduction

Introduction

Gradient descent is a way to minimize an objective function J(✓)
✓ 2 Rd : model parameters
⌘: learning rate
r✓J(✓): gradient of the objective function with regard to the
parameters

Updates parameters in opposite direction of gradient.
Update equation: ✓ = ✓ � ⌘ ·r✓J(✓)

Figure: Optimization with gradient descent

Sebastian Ruder Optimization for Deep Learning 24.11.17 3 / 49

Gradient Descent Variants

´ Batch Gradient Descent

´ Stochastic Gradient Descent

´ Mini-batch Gradient Descent

´ Difference: how much data we use in computing the gradients

Batch Gradient Descent

´ Computes gradient with the entire dataset

´ Update rule:

Gradient descent variants Batch gradient descent

Batch gradient descent

Computes gradient with the entire dataset.

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓)

for i in range(nb_epochs):

params_grad = evaluate_gradient(

loss_function , data , params)

params = params - learning_rate * params_grad

Listing 1: Code for batch gradient descent update

Sebastian Ruder Optimization for Deep Learning 24.11.17 5 / 49

Gradient descent variants Batch gradient descent

Batch gradient descent

Computes gradient with the entire dataset.

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓)

for i in range(nb_epochs):

params_grad = evaluate_gradient(

loss_function , data , params)

params = params - learning_rate * params_grad

Listing 1: Code for batch gradient descent update

Sebastian Ruder Optimization for Deep Learning 24.11.17 5 / 49

´ Pros:
´ Guaranteed to converge to global minimum for convex objective function and

to a stationary/critical point for non-convex ones.

´ Exponentially fast (linear) convergence rates in strongly convex landscape

´ Sublinear convergence rates in convex landscape

´ Cons:
´ Slow in big data.

´ Intractable for big datasets that do not fit in memory.

´ No online learning.

Stochastic Gradient Descent

´ Computes update for each example (x(i), y(i)), usually uniformly sampled
from the training dataset

´ Update equation:

´ The expectation of stochastic gradient is the batch gradient

Gradient descent variants Stochastic gradient descent

Stochastic gradient descent

Computes update for each example x

(i)
y

(i).

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓; x (i); y (i))

for i in range(nb_epochs):

np.random.shuffle(data)

for example in data:

params_grad = evaluate_gradient(

loss_function , example , params)

params = params - learning_rate * params_grad

Listing 2: Code for stochastic gradient descent update

Sebastian Ruder Optimization for Deep Learning 24.11.17 7 / 49

Gradient descent variants Stochastic gradient descent

Stochastic gradient descent

Computes update for each example x

(i)
y

(i).

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓; x (i); y (i))

for i in range(nb_epochs):

np.random.shuffle(data)

for example in data:

params_grad = evaluate_gradient(

loss_function , example , params)

params = params - learning_rate * params_grad

Listing 2: Code for stochastic gradient descent update

Sebastian Ruder Optimization for Deep Learning 24.11.17 7 / 49

´ Pros:
´ Guaranteed to converge to global minimum for convex losses and to a local

optima for non-convex ones, may escape saddle points polynomially fast

´ O(1/k) convergence rates in convex losses, possibly dimension-free

´ Much faster than batch in big data

´ Online learning algorithms

´ Cons:
´ High variance in gradients and outcomes

Gradient descent variants Stochastic gradient descent

Pros
Much faster than batch gradient descent.
Allows online learning.

Cons
High variance updates.

Figure: SGD fluctuation (Source: Wikipedia)

Sebastian Ruder Optimization for Deep Learning 24.11.17 8 / 49

Batch GD vs. Stochastic GD

´ SGD shows same convergence behaviour as batch gradient descent if
learning rate is slowly decreased (annealed) over time.

Gradient descent variants Stochastic gradient descent

Batch gradient descent vs. SGD fluctuation

Figure: Batch gradient descent vs. SGD fluctuation (Source: wikidocs.net)

SGD shows same convergence behaviour as batch gradient descent if
learning rate is slowly decreased (annealed) over time.

Sebastian Ruder Optimization for Deep Learning 24.11.17 9 / 49

Mini-batch Gradient Descent

´ Performs update for every mini-batch of random n examples.

´ Update equation:

´ The expectation of gradient is the same as the batch gradient

Gradient descent variants Mini-batch gradient descent

Mini-batch gradient descent

Performs update for every mini-batch of n examples.

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓; x (i :i+n); y (i :i+n))

for i in range(nb_epochs):

np.random.shuffle(data)

for batch in get_batches(data , batch_size =50):

params_grad = evaluate_gradient(

loss_function , batch , params)

params = params - learning_rate * params_grad

Listing 3: Code for mini-batch gradient descent update

Sebastian Ruder Optimization for Deep Learning 24.11.17 10 / 49

Gradient descent variants Mini-batch gradient descent

Mini-batch gradient descent

Performs update for every mini-batch of n examples.

Update equation: ✓ = ✓ � ⌘ ·r✓J(✓; x (i :i+n); y (i :i+n))

for i in range(nb_epochs):

np.random.shuffle(data)

for batch in get_batches(data , batch_size =50):

params_grad = evaluate_gradient(

loss_function , batch , params)

params = params - learning_rate * params_grad

Listing 3: Code for mini-batch gradient descent update

Sebastian Ruder Optimization for Deep Learning 24.11.17 10 / 49

´ Pros
´ Reduces variance of updates.

´ Can exploit matrix multiplication primitives.

´ Cons
´ Mini-batch size is a hyperparameter. Common sizes are 50-256.

´ Typically the algorithm of choice.

´ Usually referred to as SGD in deep learning even when mini-batches are
used.

Gradient descent variants Mini-batch gradient descent

Method Accuracy
Update
Speed

Memory
Usage

Online
Learning

Batch
gradient descent

Good Slow High No

Stochastic
gradient descent

Good (with
annealing)

High Low Yes

Mini-batch
gradient descent

Good Medium Medium Yes

Table: Comparison of trade-o↵s of gradient descent variants

Sebastian Ruder Optimization for Deep Learning 24.11.17 12 / 49

Challenges

´ Choosing a learning rate.

´ Defining an annealing (learning rate decay) schedule.

´ Escaping saddles and suboptimal minima.

Variants of Gradient Descent Algorithms

´ Momentum

´ Nesterov accelerated gradient

´ Adagrad

´ Adadelta

´ RMSprop

´ Adam

´ Adam extensions

Momentum
Gradient descent optimization algorithms Momentum

Momentum

SGD has trouble navigating ravines.
Momentum [Qian, 1999] helps SGD accelerate.
Adds a fraction � of the update vector of the past step vt�1 to
current update vector vt . Momentum term � is usually set to 0.9.

vt = �vt�1 + ⌘r✓J(✓)

✓ = ✓ � vt
(1)

(a) SGD without momentum (b) SGD with momentum

Figure: Source: Genevieve B. Orr

Sebastian Ruder Optimization for Deep Learning 24.11.17 15 / 49

Gradient descent optimization algorithms Momentum

Reduces updates for dimensions whose gradients change
directions.

Increases updates for dimensions whose gradients point in the
same directions.

Figure: Optimization with momentum (Source: distill.pub)

Sebastian Ruder Optimization for Deep Learning 24.11.17 16 / 49

Nesterov Accelerated GradientGradient descent optimization algorithms Nesterov accelerated gradient

Nesterov accelerated gradient

Momentum blindly accelerates down slopes: First computes
gradient, then makes a big jump.
Nesterov accelerated gradient (NAG) [Nesterov, 1983] first makes a
big jump in the direction of the previous accumulated gradient
✓ � �vt�1. Then measures where it ends up and makes a correction,
resulting in the complete update vector.

vt = � vt�1 + ⌘r✓J(✓ � �vt�1)

✓ = ✓ � vt
(2)

Figure: Nesterov update (Source: G. Hinton’s lecture 6c)

Sebastian Ruder Optimization for Deep Learning 24.11.17 17 / 49

Adagrad
Gradient descent optimization algorithms Adagrad

Adagrad

Previous methods: Same learning rate ⌘ for all parameters ✓.
Adagrad [Duchi et al., 2011] adapts the learning rate to the
parameters (large updates for infrequent parameters, small updates
for frequent parameters).
SGD update: ✓t+1 = ✓t � ⌘ · gt

gt = r✓tJ(✓t)

Adagrad divides the learning rate by the square root of the sum of
squares of historic gradients.
Adagrad update:

✓t+1 = ✓t �
⌘p

Gt + ✏
� gt (3)

Gt 2 Rd⇥d : diagonal matrix where each diagonal element i , i is the
sum of the squares of the gradients w.r.t. ✓i up to time step t

✏: smoothing term to avoid division by zero
�: element-wise multiplication

Sebastian Ruder Optimization for Deep Learning 24.11.17 18 / 49

´ Pros
´ Well-suited for dealing with sparse data.

´ Significantly improves robustness of SGD.

´ Lesser need to manually tune learning rate.

´ Cons
´ Accumulates squared gradients in denominator.

´ Causes the learning rate to shrink and become infinitesimally small.

Adadelta
Gradient descent optimization algorithms Adadelta

Adadelta

Adadelta [Zeiler, 2012] restricts the window of accumulated past
gradients to a fixed size. SGD update:

�✓t = �⌘ · gt
✓t+1 = ✓t +�✓t

(4)

Defines running average of squared gradients E [g2]t at time t:

E [g2]t = �E [g2]t�1 + (1� �)g2
t (5)

�: fraction similarly to momentum term, around 0.9

Adagrad update:

�✓t = � ⌘p
Gt + ✏

� gt (6)

Preliminary Adadelta update:

�✓t = � ⌘p
E [g2]t + ✏

gt (7)

Sebastian Ruder Optimization for Deep Learning 24.11.17 20 / 49

Gradient descent optimization algorithms Adadelta

�✓t = � ⌘p
E [g2]t + ✏

gt (8)

Denominator is just root mean squared (RMS) error of gradient:

�✓t = � ⌘

RMS [g]t
gt (9)

Note: Hypothetical units do not match.
Define running average of squared parameter updates and RMS:

E [�✓2]t = �E [�✓2]t�1 + (1� �)�✓2t

RMS [�✓]t =
q
E [�✓2]t + ✏

(10)

Approximate with RMS [�✓]t�1, replace ⌘ for final Adadelta update:

�✓t = �RMS [�✓]t�1

RMS [g]t
gt

✓t+1 = ✓t +�✓t

(11)

Sebastian Ruder Optimization for Deep Learning 24.11.17 21 / 49

RMSprop
Gradient descent optimization algorithms RMSprop

RMSprop

Developed independently from Adadelta around the same time by
Geo↵ Hinton.

Also divides learning rate by a running average of squared
gradients.

RMSprop update:

E [g2]t = �E [g2]t�1 + (1� �)g2
t

✓t+1 = ✓t �
⌘p

E [g2]t + ✏
gt

(12)

�: decay parameter; typically set to 0.9
⌘: learning rate; a good default value is 0.001

Sebastian Ruder Optimization for Deep Learning 24.11.17 22 / 49

Adam

Gradient descent optimization algorithms Adam

Adam

Adaptive Moment Estimation (Adam) [Kingma and Ba, 2015] also
stores running average of past squared gradients vt like Adadelta
and RMSprop.

Like Momentum, stores running average of past gradients mt .

mt = �1mt�1 + (1� �1)gt

vt = �2vt�1 + (1� �2)g
2
t

(13)

mt : first moment (mean) of gradients
vt : second moment (uncentered variance) of gradients
�1,�2: decay rates

Sebastian Ruder Optimization for Deep Learning 24.11.17 23 / 49

Gradient descent optimization algorithms Adam

mt and vt are initialized as 0-vectors. For this reason, they are biased
towards 0.

Compute bias-corrected first and second moment estimates:

m̂t =
mt

1� �t
1

v̂t =
vt

1� �t
2

(14)

Adam update rule:

✓t+1 = ✓t �
⌘p

v̂t + ✏
m̂t (15)

Sebastian Ruder Optimization for Deep Learning 24.11.17 24 / 49

Adam Extensions

Gradient descent optimization algorithms Adam extensions

Adam extensions

1 AdaMax [Kingma and Ba, 2015]
Adam with `1 norm

2 Nadam [Dozat, 2016]
Adam with Nesterov accelerated gradient

Sebastian Ruder Optimization for Deep Learning 24.11.17 25 / 49

Update Equations
Gradient descent optimization algorithms Update equations

Update equations

Method Update equation

SGD
gt = r✓tJ(✓t)
�✓t = �⌘ · gt
✓t = ✓t +�✓t

Momentum �✓t = �� vt�1 � ⌘gt
NAG �✓t = �� vt�1 � ⌘r✓J(✓ � �vt�1)

Adagrad �✓t = � ⌘p
Gt + ✏

� gt

Adadelta �✓t = �RMS [�✓]t�1

RMS [g]t
gt

RMSprop �✓t = � ⌘p
E [g2]t + ✏

gt

Adam �✓t = � ⌘p
v̂t + ✏

m̂t

Table: Update equations for the gradient descent optimization algorithms.

Sebastian Ruder Optimization for Deep Learning 24.11.17 26 / 49

Visualization of algorithms
Gradient descent optimization algorithms Comparison of optimizers

Visualization of algorithms

(a) SGD optimization on loss surface
contours

(b) SGD optimization on saddle point

Figure: Source and full animations: Alec Radford

Sebastian Ruder Optimization for Deep Learning 24.11.17 27 / 49

Comparisons

´ Adaptive learning rate methods (Adagrad, Adadelta, RMSprop, Adam) are
particularly useful for sparse features.

´ Adagrad, Adadelta, RMSprop, and Adam work well in similar
circumstances.

´ [Kingma and Ba, 2015] show that bias-correction helps Adam slightly
outperform RMSprop.

Parallel and Distributed SGD

´ Hogwild! [Niu et al., 2011]
´ Parallel SGD updates on CPU

´ Shared memory access without parameter lock Only works for sparse input data

´ Downpour SGD [Dean et al., 2012]
´ Multiple replicas of model on subsets of training data run in parallel

´ Updates sent to parameter server;

´ updates fraction of model parameters

´ Delay-tolerant Algorithms for SGD [Mcmahan and Streeter, 2014]
´ Methods also adapt to update delays

´ TensorFlow [Abadi et al., 2015]
´ Computation graph is split into a subgraph for every device

´ Communication takes place using Send/Receive node pairs

´ Elastic Averaging SGD [Zhang et al., 2015]
´ Links parameters elastically to a center variable stored by parameter server

Additional Strategies for SGD

´ Shuffling and Curriculum Learning [Bengio et al., 2009]
´ Shuffle training data after every epoch to break biases

´ Order training examples to solve progressively harder problems; infrequently used in
practice

´ Batch normalization [Ioffe and Szegedy, 2015]
´ Re-normalizes every mini-batch to zero mean, unit variance

´ Must-use for computer vision

´ Early stopping
´ “Early stopping (is) beautiful free lunch” (Geoff Hinton)

´ Gradient noise [Neelakantan et al., 2015]
´ Add Gaussian noise to gradient

´ Makes model more robust to poor initializations

´ Escape saddles or local optima

Adam vs. Tuned SGD

´ Many recent papers use SGD with learning rate annealing.

´ SGD with tuned learning rate and momentum is competitive with Adam
[Zhang et al., 2017b].

´ Adam converges faster, but oscillates and may underperform SGD on
some tasks, e.g. Machine Translation [Wu et al., 2016].

´ Adam with restarts and SGD-style annealing converges faster and
outperforms SGD [Denkowski and Neubig, 2017].

´ Increasing the batch size may have the same effect as decaying the
learning rate [Smith et al., 2017].

Reference
´ [Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,

C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Man, D., Monga,
R., Moore, S., Murray, D., Shlens, J., Steiner, B., Sutskever, I., Tucker, P., Vanhoucke,
V., Vasudevan, V., Vinyals, O., Warden, P., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.

´ [Bello et al., 2017] Bello, I., Zoph, B., Vasudevan, V., and Le, Q. V. (2017). Neural
Optimizer Search with Reinforcement Learning. In Proceedings of the 34th
International Conference on Machine Learning.

´ [Bengio et al., 2009] Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009).
Curriculum learning. Proceedings of the 26th annual international conference on
machine learning, pages 41–48.

´ [Dean et al., 2012] Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q.
V., Mao, M. Z., Ranzato, M. A., Senior, A., Tucker, P., Yang, K., and Ng, A. Y. (2012).
Large Scale Distributed Deep Networks. NIPS 2012: Neural Information Processing
Systems, pages 1–11.

´ [Denkowski and Neubig, 2017] Denkowski, M. and Neubig, G. (2017). Stronger
Baselines for Trustable Results in Neural Machine Translation. In Workshop on Neural
Machine Translation (WNMT).

Reference

´ [Dinh et al., 2017] Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. (2017). Sharp
Minima Can Generalize For Deep Nets. In Proceedings of the 34 th International
Conference on Machine Learning.

´ [Dozat, 2016] Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR
Workshop, (1):2013–2016.

´ [Dozat and Manning, 2017] Dozat, T. and Manning, C. D. (2017). Deep Biaffine
Attention for Neural Dependency Parsing. In ICLR 2017.

´ [Duchi et al., 2011] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive
Subgradient Methods for Online Learning and Stochastic Optimization. Journal of
Machine Learning Research, 12:2121–2159.

´ [Huang et al., 2017] Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and
Weinberger, K. Q. (2017). Snapshot Ensembles: Train 1, get M for free. In
Proceedings of ICLR 2017.

´ [Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch Normalization:
Accelerating Deep Network Training by Reducing Internal Covariate Shift.
arXiv preprint arXiv:1502.03167v3.

´ [Ruder, 2016] Ruder, S. (2016). An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747.

Reference

´ [Nesterov, 1983] Nesterov, Y. (1983). A method for unconstrained convex
minimization problem with the rate of convergence o(1/k2). Doklady ANSSSR
(translated as Soviet.Math.Docl.), 269:543–547.

´ [Niu et al., 2011] Niu, F., Recht, B., Christopher, R., and Wright, S. J. (2011).
Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent.
pages 1–22.

´ [Qian, 1999] Qian, N. (1999). On the momentum term in gradient descent
learning algorithms. Neural networks : the official journal of the International
Neural Network Society, 12(1):145–151.

´ [Zeiler, 2012] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method.
arXiv preprint arXiv:1212.5701.

´ [Zhang et al., 2015] Zhang, S., Choromanska, A., and LeCun, Y. (2015). Deep
learning with Elastic Averaging SGD. Neural Information Processing Systems
Conference (NIPS 2015), pages 1–24.

Thank you!

