An Introduction to Optimization
Methods in Deep Learning

Yuan YAO
HKUST

Acknowledgement

» [eifei Li, Stanford ¢s231n

= Ruder, Sebastian (2016). An overview of gradient descent optimization
algorithms. arXiv:1609.04747.

= hitp://ruder.io/deep-learning-optimization-2017/

Image Classification

Examp|e Dataset: CIFAR10 Example Dataset: Fashion MNIST

28x28 grayscale images

60,000 training and 10,000 test examples
10 classes 10 classes

50,000 training images indox °o 1 2 3 4 5 & 1 8 o
10,000 testing images

airplane Fﬁ.

automobile g E ;fi

bird BiE

5

deer ‘d

dog HERAN

frog d3 o0 T |

horse A1 Ed e B _

ship [I R e R RS sciioha niszimizigsace
ek i RaENZs@s T TR e

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

Jason WU, Peng XU, and Nayeon LEE

The Challenge of Human-Ins

omputers

The Problem: Semantic Gap

This image by Nikita is
licensed under CC-BY 2.0

tructin

[[105
[91
[76
[99
[106
114
[133
[128
[125
[127
[115

112
a8
85
81
21

1e8

137

137

133

108

111
186

118
115
143
117

83

128

121
104
122
145

93

119

102
139

104
118
186

58
182

a7
185
103

187
78
61

87]
B5]
85]
a4]
95]
91]
82]
101]
98]
84]
78]
80]
87]
119]
118]
112]
1071
109]
94]
86]
791
99]
187]
84]]

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)

Complex Invariance

Challenges: Viewpoint variation

=

Euclidean transform

All pixels change when
the camera moves!

Challenges: Deformation

Large scale deformation

Complex Invariance

Challenges: lllumination Challenges: Background Clutter

Data Driven Learning of the invariants:
linear discriminant/classification

- f(x W) ——» 10 numbers giving f(X,W) — WX + b

class scores

Array of 32x32x3 numbers T N
(3072 numbers total) W _—
==

parameters s
or weights
Stretch pixels into column

Image

car classifier

) 56
02 | -05| 0.1 | 2.0 1.1 -96.8 | Cat score
231
15 | 1.3 | 21 | 0.0 + 3.2 | = | 4379 | Dog score
24
o 0 |025| 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2
plane car

bird cat

(Empirical) Loss or Risk Function

Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W) =Wz are:

A loss function tells how
good our current classifier is

Given a dataset of examples
N
{(2s, yi) Fiza

Where ;. is image and
Y; is (integer) label

Loss over the dataset is a
sum of loss over examples:

L= % ZLz‘(f(xz'v W), yi)

“Hinge loss’

Hing Loss

Sjl

Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:B,,;, y,,;)
where g, is the image ana
where g, is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

cat 3_2 1 3 29 the SVM loss has the form:

car 5.1 4.9 2.5 Li:Z{O if sy, > 5+ 1
iz 85 = Syt 1 otherwise

lg 1.7 20 34 v

Losses: 2.9 0 12.9 b

Cross Entropy (Negative Log-likelihood)

LOSS

Softmax Classifier (Multinomial Logistic Regression)

cat 3.2
car 5.1
frog -1.7

exp

Li = —log(5£5)
unnormalized probabilities
24.5 0.13 |~ L_i="-log(0.13)
normalize =0.89
164.0— | 0.87
0.18 0.00
probabilities

unnormalized log probabilities

Loss + Regularization

L E L CL',,,,) y@) i)\R(W)
\ J J
Y Y
Data loss: Model predictions Regularization: Model
should match training data should be “simple”, so it

works on test data

Occam’s Razor:

“Among competing hypotheses,
the simplest is the best”

William of Ockham, 1285 - 1347

Regularizations

» Explicit regularization
» | 2-regularization R(W) — Ek El W?ii
» |]-regularization (Lasso) R(W) = Ek Zz | Wl
= Elastic-net (L1+L2) RW)=>", ElﬁWﬁl + Wiy
= Max-norm regularization
» |mplicit regularization
®» Dropout
» Bafch-normalization

» Farlystopping

Hyperparameter (Regularization) Tuning

Data rich:

train test

train validation test

Data poverty: cross-validation

[123

!
11765 47
11765 a7
11765 47
11765 47

11765 47

Recap How do we find the best W?

- We have some dataset of (x,y)

e.g.
- We have a score function: s = f(z;W) =Wz

- We have a loss function:

Softmax

L; = — log(=
g ij”) SVM

Li =), max(0,s; — sy, +1)

L=%Y", L+ R(W) Fullloss

In regression, square loss is often used instead.

regularization loss

score function |-
—_—

—

1

f(-Ti,. W)

data loss
. I, ‘

L

Optimization Methods to find minimao
of the Loss Landscape?

Gradient Descent Method

@ Gradient descent is a way to minimize an objective function J(6)
o 0 € RY: model parameters
e 7: learning rate
o VyJ(0): gradient of the objective function with regard to the
parameters
@ Updates parameters in opposite direction of gradient.

o Update equation: 8 =0 —n - VyJ(0)

A

J(0)

local) minimum

>
»

0" 6

Figure: Optimization with gradient descent

Gradient Descent Variants

Batch Gradient Descent
Stochastic Gradient Descent
Mini-batch Gradient Descent

Difference: how much data we use in computing the gradients

Batch Gradient Descent

» Computes gradient with the entire dataset

» Update rule: 0 — 9 . 77 . VQJ(H)

for i in range(nb_epochs):
params_grad = evaluate_gradient (
loss_function, data, params)
params = params - learning_rate * params_grad

Listing 1: Code for batch gradient descent update

Pros:

» Guaranteed to converge to global minimum for convex objective function and
to a stationary/critical point for non-convex ones.

» Exponentially fast (linear) convergence rates in strongly convex landscape
» Sublinear convergence rates in convex landscape
Cons:

= Slow in big data.

» |ntractable for big datasets that do not fit in memory.

= No online learning.

Stochastic Gradient Descent

= Computes update for each example (x(, y(l), usually uniformly sampled
from the training dataset

» Update equation:
B =0—n-VedO; x1); y

» The expectation of stochastic gradient is the batch gradient

for i in range(nb_epochs):
np.random.shuffle (data)
for example in data:

params_grad = evaluate_gradient (
loss_function, example, params)
params = params - learning_rate * params_grad

Listing 2: Code for stochastic gradient descent update

» Pros:

» Guaranteed to converge to global minimum for convex losses and to a local
optima for non-convex ones, may escape saddle points polynomially fast

» O(1/k) convergence rates in convex losses, possibly dimension-free
» Much faster than batch in big data

» Online learning algorithms

» Cons: s

» High variance in gradients and outcomes

-0

L L L L L L
0 s00 1000 1500 2000 2s00 3000 3500

Figure: SGD fluctuation (Source: Wikipedia)

Batch GD vs. Stochastic GD

» SGD shows same convergence behaviour as batch gradient descent if
learning rate is slowly decreased (annealed) over time.

m—

Figure: Batch gradient descent vs. SGD fluctuation (Source: wikidocs.net)

Mini-batch Gradient Descent

» Performs update for every mini-batch of random n examples.

» Update equation:
0 —0— n - VQJ(Q, X(i:i—l—n); y(i:i—l—n))
» The expectation of gradient is the same as the batch gradient
for i in range(nb_epochs):

np.random.shuffle (data)
for batch in get_batches(data, batch_size=50):

params_grad = evaluate_gradient (
loss_function, batch, params)
params = params - learning_rate * params_grad

Listing 3: Code for mini-batch gradient descent update

Pros

» Reduces variance of updates.

» Can exploit matrix multiplication primitives.
Cons

» Mini-batch size is a hyperparameter. Common sizes are 50-256.
Typically the algorithm of choice.

Usually referred to as SGD in deep learning even when mini-batches are
used.

Update Memory Online
Method Accuracy Speed Usage Learning
Batch Good Slow High No
gradient descent
Stoc?hastlc Good (.thh High Low Ves
gradient descent annealing)
Mini-batch Good Medium Medium Yes

gradient descent

Table: Comparison of trade-offs of gradient descent variants

Challenges

» Choosing a learning rate.
» Defining an annealing (learning rate decay) schedule.

®» Escaping saddles and suboptimal minima.

Variants of Gradient Descent Algorithms

Momentum

Nesterov accelerated gradient
Adagrad

Adadelta

RMSprop

Adam

Adam extensions

Momentum

@ SGD has trouble navigating ravines.

@ Momentum [Qian, 1999] helps SGD accelerate.

@ Adds a fraction v of the update vector of the past step v;_; to
current update vector v;. Momentum term - is usually set to 0.9.

Ve = yvi—1 +nVeJ(0) (1)

0=0— Vit
(a) SGD without momentum (b) SGD with momentum

Figure: Source: Genevieve B. Orr

@ Reduces updates for dimensions whose gradients change
directions.

@ Increases updates for dimensions whose gradients point in the
same directions.

(%) starting Point

—

Optimum

Iﬁﬂun

Figure: Optimization with momentum (Source: distill.pub)

Nesterov Accelerated Gradient

@ Momentum blindly accelerates down slopes: First computes
gradient, then makes a big jump.

@ Nesterov accelerated gradient (NAG) [Nesterov, 1983] first makes a
big jump in the direction of the previous accumulated gradient
6 — yvt_1. Then measures where it ends up and makes a correction,
resulting in the complete update vector.

Ve =5 Ve—1 +nVeJ(0 — yvi_1)
0=0— Vit

-

Figure: Nesterov update (Source: G. Hinton's lecture 6c¢)

(2)

Adagrad

@ Previous methods: Same learning rate 7 for all parameters 6.
@ Adagrad [Duchi et al., 2011] adapts the learning rate to the
parameters (large updates for infrequent parameters, small updates

for frequent parameters).
@ SGD update: 0;11 =60 — 1 - gt
@ 8 — V@t./(et)

@ Adagrad divides the learning rate by the square root of the sum of

squares of historic gradients.
@ Adagrad update:

Ui
Ori1 = 0 — —— O gy (3)
vV Gt + €
o G, € RY%9: diagonal matrix where each diagonal element i, i is the
sum of the squares of the gradients w.r.t. 6; up to time step t
e ¢: smoothing term to avoid division by zero
e (©: element-wise multiplication

» Pros
» Well-suited for dealing with sparse data.
» Significantly improves robustness of SGD.
» | esser need to manually fune learning rate.
= Cons
» Accumulates squared gradients in denominator.

» Causes the learning rate to shrink and become infinitesimally small.

Adadelta

o Adadelta [Zeiler, 2012] restricts the window of accumulated past
gradients to a fixed size. SGD update:
Aby = —n - gt
Orr1 = 0 + AG;

e Defines running average of squared gradients E[g?]; at time t:

Elg®]e = vElg¥e-1 + (1 — 7)g?

e ~: fraction similarly to momentum term, around 0.9

@ Adagrad update:

U
ANy =——L @
t Ge T < 8t

@ Preliminary Adadelta update:

(5)

(6)

(7)

NGy = —— 1 (8)

VEET e

@ Denominator is just root mean squared (RMS) error of gradient:

A@t -

n
_W[g]tgt (9)

@ Note: Hypothetical units do not match.
@ Define running average of squared parameter updates and RMS:

E[A0?]; = vE[AO?]i—1 + (1 —) AH?

RMS[A], = 1/ E[A62], + ¢ (10)

@ Approximate with RMS[A6];_1, replace 1 for final Adadelta update:
RMS[AQ]{_—_:[

RMS[g], (11)
Orr1 = 0 + AD;

A@t:—

RMSprop

@ Developed independently from Adadelta around the same time by
Geoff Hinton.

@ Also divides learning rate by a running average of squared
gradients.

@ RMSprop update:

Elg®]: = vE[g®)e-1 + (1 — 7)g?
n (12)

T VEET

9t—|—1 — ‘9t

e : decay parameter; typically set to 0.9
e 1): learning rate; a good default value is 0.001

Adam

e Adaptive Moment Estimation (Adam) [Kingma and Ba, 2015] also

stores running average of past squared gradients v; like Adadelta
and RMSprop.

@ Like Momentum, stores running average of past gradients m;.

my = Bime—1 + (1 — 51)8:
Ve = Bove—1 + (1 — 52)8%2

(13)
o my: first moment (mean) of gradients

o v;: second moment (uncentered variance) of gradients
e (31, >: decay rates

@ m; and v; are initialized as O-vectors. For this reason, they are biased
towards O.

@ Compute bias-corrected first and second moment estimates:

A mt
mg =
1—pt
~ Vit 1 (14)
Vi = 1 ﬁé_
@ Adam update rule:
(9t_|_]_ — Ht - Lflht (15)

Adam Extensions

@ AdaMax [Kingma and Ba, 2015]

e Adam with /5, norm

@ Nadam [Dozat, 2016]

e Adam with Nesterov accelerated gradient

Update Equations

Method Update equation
g: = Vy,J(0:)
01- — 01- + A@t
Momentum Af; = —v vi_1 — ng:
NAG AOy = —~ Vtﬁl —nVed(0 — yvi_1)
Adagrad NGy = — ®
g | R /\C/;fsfrAee] 3
Adadelt NGy = — -
o T RMSlgl
RMSprop Ab; = — g
t \/57[32]t te

Adam AQt = —

me

V0 +e

Visualization of algorithms

SGD
Momentum

SGD
NAG S - Momentum
Adagrad y == NAG
Adadelta S — Adagrad
i
Adadelta
4 Rmsprop

e,
PRI R R T
oty
R
SRR
N,

g)ntsoilr)s optimization on loss surface (b) SGD optimization on saddle point

Figure: Source and full animations: Alec Radford

Comparisons

» Adapftive learning rate methods (Adagrad, Adadelta, RMSprop, Adam) are
particularly useful for sparse features.

» Adagrad, Adadelta, RMSprop, and Adam work well in similar
circumstances.

= [Kingma and Ba, 2015] show that bias-correction helps Adam slightly
outperform RMSprop.

Parallel and Distributed SGD

= Hogwild! [Niu et al., 2011]
» Parallel SGD updates on CPU
» Shared memory access without parameter lock Only works for sparse input data
» Downpour SGD [Dean et al., 2012]
» Multiple replicas of model on subsets of training data run in parallel
» Updates sent to parameter server;
» ypdates fraction of model parameters
» Delay-tolerant Algorithms for SGD [Mcmahan and Streeter, 2014]
» Methods also adapt to update delays
» TensorFlow [Abadi et al., 2015]
= Computation graph is split info a subgraph for every device
» Communication takes place using Send/Receive node pairs
» Flastic Averaging SGD [Zhang et al., 2015]

» |inks parameters elastically to a center variable stored by parameter server

Additional Strategies tor SGD

Shuffling and Curriculum Learning [Bengio et al., 2009]
» Shuffle fraining data after every epoch to break biases

» QOrder training examples to solve progressively harder problems; infrequently used in
practice

Batch normalization [loffe and Szegedy, 2015]
» Re-normalizes every mini-batch to zero mean, unit variance
» Must-use for computer vision
Early stopping
» “Farly stopping (is) beautiful free lunch™ (Geoff Hinton)
Gradient noise [Neelakantan et al., 2015]
» Add Gaussian noise to gradient
» Makes model more robust to poor initializations

» FEscape saddles or local optima

Adam vs. Tuned SGD

» Many recent papers use SGD with learning rate annealing.

» SGD with tuned learning rate and momentum is competitive with Adam
[Zhang et al., 2017b].

» Adam converges faster, but oscillates and may underperform SGD on
some tasks, e.g. Machine Translation [Wu et al., 2016].

» Adam with restarts and SGD-style annealing converges faster and
outperforms SGD [Denkowski and Neubig, 2017].

® |ncreasing the batch size may have the same effect as decaying the
learning rate [Smith et al., 2017].

Reference

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, |., Harp,
A., Irving, G., Isard, M., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Man, D., Monga,
R., Moore, S., Murray, D., Shlens, J., Steiner, B., Sutskever, |., Tucker, P., Vanhoucke,
V., Vasudevan, V., Vinyals, O., Warden, P., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.

[Bello et al., 2017] Bello, I., Zoph, B., Vasudevan, V., and Le, Q. V. (2017). Neural
Optimizer Search with Reinforcement Learning. In Proceedings of the 34th
International Conference on Machine Learning.

[Bengio et al., 2009] Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009).
Curriculum learning. Proceedings of the 26th annual international conference on
machine learning, pages 41-48.

[Dean et al., 2012] Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q.
V., Mao, M. Z., Ranzato, M. A., Senior, A., Tucker, P., Yang, K., and Ng, A. Y. (2012).
Large Scale Distributed Deep Networks. NIPS 2012: Neural Information Processing
Systems, pages 1-11.

[Denkowski and Neubig, 2017] Denkowski, M. and Neubig, G. (2017). Stronger
Baselines for Trustable Results in Neural Machine Translation. In Workshop on Neural
Machine Translation (WNMT).

Reference

» [Dinh et al., 2017] Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. (2017). Sharp
Minima Can Generalize For Deep Nets. In Proceedings of the 34 th International
Conference on Machine Learning.

» [Dozat, 2016] Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR
Workshop, (1):2013-2016.

» [Dozat and Manning, 2017] Dozat, T. and Manning, C. D. (2017). Deep Biaffine
Attention for Neural Dependency Parsing. In ICLR 2017.

» [Duchietal, 2011] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive
Subgradient Methods for Online Learning and Stochastic Optimization. Journal of
Machine Learning Research, 12:2121-2159.

» [Huang et al., 2017] Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and
Weinberger, K. Q. (2017). Snapshot Ensembles: Train 1, get M for free. In
Proceedings of ICLR 2017.

» [loffe and Szegedy, 2015] loffe, S. and Szegedy, C. (2015). Batch Normalization:
Accelerating Deep Network Training by Reducing Internal Covariate Shift.
arXiv preprint arXiv:1502.03167v3.

» [Ruder, 2016] Ruder, S. (2016). An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747.

Reference

» [Nesterov, 1983] Nesterov, Y. (1983). A method for unconstrained convex
minimization problem with the rate of convergence o(1/k2). Doklady ANSSSR
(translated as Soviet.Math.Docl.), 269:543-547.

» [Niu et al., 2011] Niu, F., Recht, B., Christopher, R., and Wright, S. J. (2011).
Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent.
pages 1-22.

®» [Qian, 1999] Qian, N. (1999). On the momentum term in gradient descent

learning algorithms. Neural networks : the official journal of the International
Neural Network Society, 12(1):145-151.

» [Zeiler, 2012] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method.
arXiv preprint arXiv:1212.5701.

®» [/hang et al., 2015] Zhang, S., Choromanska, A., and LeCun, Y. (2015). Deep
learning with Elastic Averaging SGD. Neural Information Processing Systems
Conference (NIPS 2015), pages 1-24.

Thank you!

