
An Introduction to Optimization 
and Regularization Methods in 
Deep Learning

Yuan YAO

HKUST 

1



Summary

´ Last time: First order optimization methods
´ GD (BP), SGD, Nesterov, Adagrad, ADAM, RMSPROP, etc. 

´ This time
´ Second order methods

´ Regularization methods

´ Feifei Li, Stanford cs231n



Second Order Methods
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!

More critical with SGD+Momentum, 
less common with Adam
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First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation
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Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation



Newton Method
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: What is nice about this update?
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: What is nice about this update?

No hyperparameters!
No learning rate!



But, …
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q2: Why is this bad for deep learning?

Hessian has O(N^2) elements
Inverting takes O(N^3)
N = (Tens or Hundreds of) Millions



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201749

Second-Order Optimization

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate 
inverse Hessian with rank 1 updates over time (O(n^2) 
each).

- L-BFGS (Limited memory BFGS): 
Does not form/store the full inverse Hessian.
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L-BFGS

- Usually works very well in full batch, deterministic mode 
i.e. if you have a single, deterministic f(x) then L-BFGS will 
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives 
bad results. Adapting L-BFGS to large-scale, stochastic 
setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
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- Adam is a good default choice in most cases

- If you can afford to do full batch updates then try out 
L-BFGS (and don’t forget to disable all sources of noise)

In practice:



Regularizations
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Regularization: Add term to loss

59

In common use: 
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Regularization: Dropout Example forward 
pass with a 
3-layer network 
using dropout



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201762

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous 
look

cat 
score

X

X

X



Dropout as random perturbations of models
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Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of 
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...
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Dropout: Test time

Dropout makes our output random!

Output
(label)

Input
(image)

Random 
mask

Want to “average out” the randomness at test-time

But this integral seems hard … 
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.

At test time we have:
During training we have: 

a

x y

w1 w2

At test time, multiply 
by dropout probability 
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Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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Dropout Summary

drop in forward pass

scale at test time
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More common: “Inverted dropout”

test time is unchanged!



Data normalization
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Step 1: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201736

Remember: Consider what happens when the input to a 
neuron is always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions



Data normalization
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Last time: Data Preprocessing
Before normalization: classification loss 
very sensitive to changes in weight matrix; 
hard to optimize

After normalization: less sensitive to small 
changes in weights; easier to optimize
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TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize 
variance, to do PCA or 
whitening



Regularization: Batch Normalization
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Batch Normalization
“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer. 
To make each dimension unit gaussian, apply:

this is a vanilla 
differentiable function...
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected or Convolutional layers, 
and before nonlinearity.
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected or Convolutional layers, 
and before nonlinearity.

Problem: do we 
necessarily want a unit 
gaussian input to a 
tanh layer?
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Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash 
the range if it wants to:

Note, the network can learn:

to recover the identity 
mapping.

Normalize:
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Batch Normalization [Ioffe and Szegedy, 2015]

- Improves gradient flow through 
the network

- Allows higher learning rates
- Reduces the strong dependence 

on initialization
- Acts as a form of regularization 

in a funny way, and slightly 
reduces the need for dropout, 
maybe
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Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer 
functions differently:

The mean/std are not computed 
based on the batch. Instead, a single 
fixed empirical mean of activations 
during training is used.

(e.g. can be estimated during training 
with running averages)
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Load image 
and label

“cat”

CNN

Compute
loss

Regularization: Data Augmentation

This image by Nikita is 
licensed under CC-BY 2.0
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Regularization: Data Augmentation

Load image 
and label

“cat”

CNN

Compute
loss

Transform image
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Data Augmentation
Random crops and scales
Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales:  {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B] 
pixels in training set

2. Sample a “color offset” 
along principal component 
directions

3. Add offset to all pixels of a 
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201781

Data Augmentation
Get creative for your problem!

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing, 
- lens distortions, …  (go crazy)
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Regularization: A common pattern
Training: Add some kind 
of randomness

Testing: Average out randomness 
(sometimes approximate)
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Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013
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Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014
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Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016
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Review: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]



Popular Architectures
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

First CNN-based winner
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives: 
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks
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Case Study: VGGNet

35

[Simonyan and Zisserman, 2014]

Details:
- ILSVRC’14 2nd in classification, 1st in 

localization
- Similar training procedure as Krizhevsky 

2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only 

slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other 

tasks
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Case Study: VGGNet

26
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FC 4096[Simonyan and Zisserman, 2014]

Small filters, Deeper networks
 
8 layers (AlexNet) 
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13 
(ZFNet)
-> 7.3% top 5 error in ILSVRC’14 AlexNet VGG16 VGG19
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Case Study: VGGNet

30

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 
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AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers 
has same effective receptive field as 
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs. 
72C2 for C channels per layer
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)
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VGG16

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational 
efficiency
 

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!          

12x less than AlexNet
- ILSVRC’14 classification winner 

(6.7% top 5 error)
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

“Inception module”: design a 
good local network topology 
(network within a network) and 
then stack these modules on 
top of each other
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”
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Case Study: ResNet
[He et al., 2015]

Very deep networks using residual 
connections
 

- 152-layer model for ImageNet
- ILSVRC’15 classification winner 

(3.57% top 5 error)
- Swept all classification and 

detection competitions in 
ILSVRC’15 and COCO’15!
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!
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Iterations
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Case Study: ResNet
[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to 
optimize

The deeper model should be able to perform at 
least as well as the shallower model.

A solution by construction is copying the learned 
layers from the shallower model and setting 
additional layers to identity mapping.
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relu

72

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 
desired underlying mapping

Residual block

conv

conv

X
identity

F(x) + x

F(x)

relu

conv

conv

relu

“Plain” layers
XX

H(x)

Use layers to 
fit residual 
F(x) = H(x) - x 
instead of 
H(x) directly

H(x) = F(x) + x
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
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PoolCase Study: ResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample 
spatially using stride 2 
(/2 in each dimension)

- Additional conv layer at 
the beginning

- No FC layers at the end 
(only FC 1000 to output 
classes)

No FC layers 
besides FC 
1000 to 
output 
classes

Global 
average 
pooling layer 
after last 
conv layer
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128
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PoolCase Study: ResNet
[He et al., 2015]

Total depths of 34, 50, 101, or 
152 layers for ImageNet

77



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017

Case Study: ResNet
[He et al., 2015]

1x1 conv, 256

3x3 conv, 64

1x1 conv, 64

28x28x256  
input

For deeper networks 
(ResNet-50+), use “bottleneck” 
layer to improve efficiency 
(similar to GoogLeNet)

1x1 conv, 64 filters 
to project to 
28x28x64

3x3 conv operates over 
only 64 feature maps

1x1 conv, 256 filters projects 
back to 256 feature maps 
(28x28x256)

28x28x256  
output
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Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9) 
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

[He et al., 2015]
Case Study: ResNet
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Case Study: ResNet
[He et al., 2015]

Experimental Results
- Able to train very deep 

networks without degrading 
(152 layers on ImageNet, 1202 
on Cifar)

- Deeper networks now achieve 
lowing training error as 
expected

- Swept 1st place in all ILSVRC 
and COCO 2015 competitions 

ILSVRC 2015 classification winner (3.6% 
top 5 error) -- better than “human 
performance”! (Russakovsky 2014)
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Improving ResNets...

96

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and 
training time through short networks during 
training

- Randomly drop a subset of layers during each 
training pass

- Bypass with identity function
- Use full deep network at test time

 

Deep Networks with Stochastic Depth
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Improving ResNets...

95

[Xie et al. 2016]

- Also from creators of 
ResNet

- Increases width of 
residual block through 
multiple parallel 
pathways 
(“cardinality”)

- Parallel pathways 
similar in spirit to 
Inception module

 

Aggregated Residual Transformations for Deep 
Neural Networks (ResNeXt)
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