

An Introduction to Optimization and Regularization Methods in Deep Learning

Yuan YAO HKUST

Summary

- Last time: First order optimization methods
 - GD (BP), SGD, Nesterov, Adagrad, ADAM, RMSPROP, etc.
- This time
 - Second order methods
 - Regularization methods
- Feifei Li, Stanford cs231n

Second Order Methods

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

First-Order Optimization

Second-Order Optimization Use gradient and Hessian to form quadratic approximation (1) Step to the minima of the approximation (2) Loss w1

Newton Method

Second-Order Optimization

second-order Taylor expansion:

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\top \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\top \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

Q: What is nice about this update?

Second-Order Optimization

second-order Taylor expansion:

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\top \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\top \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

No hyperparameters! No learning rate!

Q: What is nice about this update?

But, ...

Second-Order Optimization

second-order Taylor expansion:

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\top \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\top \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

Hessian has O(N²) elements Inverting takes O(N³) N = (Tens or Hundreds of) Millions

Q2: Why is this bad for deep learning?

Second-Order Optimization

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

- Quasi-Newton methods (**BGFS** most popular): instead of inverting the Hessian (O(n^3)), approximate inverse Hessian with rank 1 updates over time (O(n^2) each).
- L-BFGS (Limited memory BFGS): Does not form/store the full inverse Hessian.

L-BFGS

- Usually works very well in full batch, deterministic mode i.e. if you have a single, deterministic f(x) then L-BFGS will probably work very nicely
- Does not transfer very well to mini-batch setting. Gives bad results. Adapting L-BFGS to large-scale, stochastic setting is an active area of research.

Le et al, "On optimization methods for deep learning, ICML 2011"

In practice:

- Adam is a good default choice in most cases
- If you can afford to do full batch updates then try out L-BFGS (and don't forget to disable all sources of noise)

Regularizations

Regularization: Add term to loss

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W)$$

In common use:

L2 regularization $R(W) = \sum_k \sum_l W_{k,l}^2$ (Weight decay)L1 regularization $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2) $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

Regularization: Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

Regularization: Dropout

p = 0.5 # probability of keeping a unit active. higher = less dropout

```
def train_step(X):
```

""" X contains the data """

forward pass for example 3-layer neural network
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 = np.random.rand(*H1.shape)

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

Example forward pass with a 3-layer network using dropout

Regularization: Dropout How can this possibly be a good idea?

Forces the network to have a redundant representation; Prevents co-adaptation of features

Dropout as random perturbations of models

Regularization: Dropout

How can this possibly be a good idea?

Another interpretation:

Dropout is training a large **ensemble** of models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks! Only ~ 10^{82} atoms in the universe...

Dropout: Test time

Dropout makes our output random!

Want to "average out" the randomness at test-time $y = f(x) = E_z [f(x, z)] = \int p(z)f(x, z)dz$

But this integral seems hard ...

Dropout: Test time

Want to approximate the integral

$$y = f(x) = E_z \left[f(x, z) \right] = \int p(z) f(x, z) dz$$

Consider a single neuron.

At test time we have: $E[a] = w_1 x + w_2 y$ During training we have: $E[a] = \frac{1}{4}(w_1 x + w_2 y) + \frac{1}{4}(w_1 x + 0y)$ At test time, multiply by dropout probability $= \frac{1}{2}(w_1 x + w_2 y)$

Dropout: Test time

def predict(X):

ensembled forward pass

H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always => We must scale the activations so that for each neuron: output at test time = expected output at training time

Dropout Summary p = 0.5 # probability of keeping a unit active. higher = less dropout def train_step(X): """ X contains the data """ # forward pass for example 3-layer neural network H1 = np.maximum(0, np.dot(W1, X) + b1)U1 = np.random.rand(*H1.shape) H1 *= U1 # drop! drop in forward pass H2 = np.maximum(0, np.dot(W2, H1) + b2) U2 = np.random.rand(*H2.shape) < p # second dropout mask H2 *= U2 # drop! out = np.dot(W3, H2) + b3# backward pass: compute gradients... (not shown) # perform parameter update... (not shown) def predict(X): # ensembled forward pass

H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

""" Vanilla Dropout: Not recommended implementation (see notes below) """

scale at test time

More common: "Inverted dropout"

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):

forward pass for example 3-layer neural network

H1 = np.maximum(0, np.dot(W1, X) + b1)

U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
H1 *= U1 # drop!</pre>

H2 = np.maximum(0, np.dot(W2, H1) + b2)

U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p! H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

def predict(X):

ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
H2 = np.maximum(0, np.dot(W2, H1) + b2)
out = np.dot(W3, H2) + b3

test time is unchanged!

Data normalization

(Assume X [NxD] is data matrix, each example in a row)

$$f\left(\sum_i w_i x_i + b
ight)$$

Data normalization

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet) (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet) (mean along each channel = 3 numbers)

Not common to normalize variance, to do PCA or whitening

Regularization: Batch Normalization

Batch Normalization

[loffe and Szegedy, 2015]

"you want unit gaussian activations? just make them so."

consider a batch of activations at some layer. To make each dimension unit gaussian, apply:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

this is a vanilla differentiable function...

[loffe and Szegedy, 2015]

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\mathrm{Var}[x^{(k)}]}}$$

[loffe and Szegedy, 2015]

Problem: do we

tanh layer?

gaussian input to a

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

 $\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$ necessarily want a unit

[loffe and Szegedy, 2015]

Normalize:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

And then allow the network to squash the range if it wants to:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

Note, the network can learn: $\gamma^{(k)} = \sqrt{\text{Var}[x^{(k)}]}$ $\beta^{(k)} = \text{E}[x^{(k)}]$ to recover the identity mapping.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\begin{split} \mu_{\mathcal{B}} &\leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} & // \text{ mini-batch mean} \\ \sigma_{\mathcal{B}}^{2} &\leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2} & // \text{ mini-batch variance} \\ \widehat{x}_{i} &\leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} & // \text{ normalize} \\ y_{i} &\leftarrow \gamma \widehat{x}_{i} + \beta \equiv \text{BN}_{\gamma,\beta}(x_{i}) & // \text{ scale and shift} \end{split}$$

[loffe and Szegedy, 2015]

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe

[loffe and Szegedy, 2015]

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$

// mini-batch mean

// normalize

// scale and shift

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \qquad // \text{ mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{ mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{ normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i) \qquad // \text{ scale and shift}$$

Note: at test time BatchNorm layer functions differently:

The mean/std are not computed based on the batch. Instead, a single fixed empirical mean of activations during training is used.

(e.g. can be estimated during training with running averages)

Regularization: Data Augmentation

Data Augmentation Random crops and scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

Testing: average a fixed set of crops ResNet:

- 1. Resize image at 5 scales: {224, 256, 384, 480, 640}
- 2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Data Augmentation Color Jitter

Simple: Randomize contrast and brightness

More Complex:

- 1. Apply PCA to all [R, G, B] pixels in training set
- 2. Sample a "color offset" along principal component directions
- 3. Add offset to all pixels of a training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

Data Augmentation Get creative for your problem!

Random mix/combinations of :

- translation
- rotation
- stretching
- shearing,
- lens distortions, ... (go crazy)

Training: Add some kind of randomness

$$y = f_W(x, z)$$

Testing: Average out randomness (sometimes approximate)

$$y = f(x) = E_z \left[f(x, z) \right] = \int p(z) f(x, z) dz$$

Training: Add random noise **Testing**: Marginalize over the noise

Examples:

Dropout Batch Normalization Data Augmentation DropConnect

Wan et al, "Regularization of Neural Networks using DropConnect", ICML 2013

Training: Add random noise **Testing**: Marginalize over the noise

Examples:

Dropout Batch Normalization Data Augmentation DropConnect Fractional Max Pooling

Graham, "Fractional Max Pooling", arXiv 2014

Training: Add random noise **Testing**: Marginalize over the noise

Examples:

Dropout Batch Normalization Data Augmentation DropConnect Fractional Max Pooling Stochastic Depth

Huang et al, "Deep Networks with Stochastic Depth", ECCV 2016

Review: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Popular Architectures

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

Case Study: AlexNet

[Krizhevsky et al. 2012]

Architecture: CONV1 MAX POOL1 NORM1 CONV2 MAX POOL2 NORM2 CONV3 CONV3 CONV4 CONV5 Max POOL3 FC6 FC7 FC8

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
- manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Details:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet) -> 7.3% top 5 error in ILSVRC'14

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: $3 * (3^2C^2)$ vs. 7²C² for C channels per layer

AlexNet

FC 409

FC 4096

VGG19

(not counting biases) INPUT: [224x224x3] memory: 224*224*3=150K params: 0 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 POOL2: [56x56x128] memory: 56*56*128=400K params: 0 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 POOL2: [28x28x256] memory: 28*28*256=200K params: 0 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 POOL2: [14x14x512] memory: 14*14*512=100K params: 0 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 POOL2: [7x7x512] memory: 7*7*512=25K params: 0 FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL params: 138M parameters

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)

VGG16

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!
 12x less than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]

"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

[He et al., 2015]

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

56-layer model performs worse on both training and test error -> The deeper model performs worse, but it's not caused by overfitting!

[He et al., 2015]

Hypothesis: the problem is an *optimization* problem, deeper models are harder to optimize

The deeper model should be able to perform at least as well as the shallower model.

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning
- No FC layers at the end (only FC 1000 to output classes)

[He et al., 2015]

Total depths of 34, 50, 101, or 152 layers for ImageNet

[He et al., 2015]

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

[He et al., 2015]

Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

[He et al., 2015]

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6% top 5 error) -- better than "human performance"! (Russakovsky 2014)

Improving ResNets...

Deep Networks with Stochastic Depth

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and training time through short networks during training
- Randomly drop a subset of layers during each training pass
- Bypass with identity function
- Use full deep network at test time

Improving ResNets...

Aggregated Residual Transformations for Deep Neural Networks (ResNeXt)

[Xie et al. 2016]

- Also from creators of ResNet
- Increases width of residual block through multiple parallel pathways ("cardinality")
- Parallel pathways similar in spirit to Inception module

Reference

- [Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Man, D., Monga, R., Moore, S., Murray, D., Shlens, J., Steiner, B., Sutskever, I., Tucker, P., Vanhoucke, V., Vasudevan, V., Vinyals, O., Warden, P., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
- [Bello et al., 2017] Bello, I., Zoph, B., Vasudevan, V., and Le, Q. V. (2017). Neural Optimizer Search with Reinforcement Learning. In Proceedings of the 34th International Conference on Machine Learning.
- [Bengio et al., 2009] Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. Proceedings of the 26th annual international conference on machine learning, pages 41–48.
- [Dean et al., 2012] Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V., Mao, M. Z., Ranzato, M. A., Senior, A., Tucker, P., Yang, K., and Ng, A. Y. (2012). Large Scale Distributed Deep Networks. NIPS 2012: Neural Information Processing Systems, pages 1–11.
- [Denkowski and Neubig, 2017] Denkowski, M. and Neubig, G. (2017). Stronger Baselines for Trustable Results in Neural Machine Translation. In Workshop on Neural Machine Translation (WNMT).

Reference

- [Dinh et al., 2017] Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. (2017). Sharp Minima Can Generalize For Deep Nets. In Proceedings of the 34 th International Conference on Machine Learning.
- [Dozat, 2016] Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR Workshop, (1):2013–2016.
- [Dozat and Manning, 2017] Dozat, T. and Manning, C. D. (2017). Deep Biaffine Attention for Neural Dependency Parsing. In ICLR 2017.
- [Duchi et al., 2011] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research, 12:2121–2159.
- [Huang et al., 2017] Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and Weinberger, K. Q. (2017). Snapshot Ensembles: Train 1, get M for free. In Proceedings of ICLR 2017.
- [loffe and Szegedy, 2015] loffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167v3.
- [Ruder, 2016] Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

Reference

- [Nesterov, 1983] Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of convergence o(1/k2). Doklady ANSSSR (translated as Soviet.Math.Docl.), 269:543–547.
- [Niu et al., 2011] Niu, F., Recht, B., Christopher, R., and Wright, S. J. (2011). Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. pages 1–22.
- [Qian, 1999] Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural networks : the official journal of the International Neural Network Society, 12(1):145–151.
- [Zeiler, 2012] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. arXiv preprint arXiv:1212.5701.
- [Zhang et al., 2015] Zhang, S., Choromanska, A., and LeCun, Y. (2015). Deep learning with Elastic Averaging SGD. Neural Information Processing Systems Conference (NIPS 2015), pages 1–24.

Thank you!

