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Summary

» We have shown:

» First order optimization methods: GD (BP), SGD, Nesterov, Adagrad, ADAM, RMSPROP,
etc.

» Second order optimzation methods: L-BFGS

» Regularization methods: Penalty (L2/L1/Elastic), Dropout, Batch Normalization, Data
Augmentation, etc.

» CNN Architectures: LeNet5, Alexnet, VGG, GoogleNet, Resnet
» Now

» Recurrent Neural Networks

» [STM
» Reference:

» Feifei Li, Stanford cs231n
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AlexNet and VGG have

IREREHO VA | tons of parameters in the
Inception-v3 () | ResNet152 | fully connected layers
Jpesnerso@ T vesgs” __(_v_q@;w._/ Y g
°ResNet-34 5 | 4
Reshet18 AlexNet: ~62M parameters
Bt GooglLeNet
eI | | FC6: 256x6x6 -> 4096: 38M params
5M-------35M 65M-----95M----- 125M ---155M---
P A& FC7: 4096 -> 4096: 17M params
) Aexnet FC8: 4096 -> 1000: 4M params
oF p f 7 P ~59M params in FC layers!
5 10 15 20 25 30 35 40

Operations [G-Ops]

ResNet allows deep networks with small number of parames.



Recurrent Neural Networks




“Vanilla” Neural Network

one to one

\ Vanilla Neural Networks



Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

\ e.g. Image Captioning
image -> sequence of words



Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

\ e.g. Sentiment Classification
sequence of words -> sentiment



Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

\ e.g. Machine Translation
seq of words -> seq of words



Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

e.g. Video classification on frame level



Sequential Processing of Non-Sequence Data

Classify images by taking a
series of “glimpses”

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, lvo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with
nermicsinn




Recurrent Neural Network




Recurrent Neural Network

usually want to
y predict a vector at
5 some time steps

-




We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy|= fW(ht—la "L‘t)

new state / old state input vector at

some time step
some function X

with parameters W




We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy = fW(ht—la "L‘t)

Notice: the same function and the same set
of parameters are used at every time step.




Vanilla Recurrent Neural Networks

State Space equations in feedback dynamical systems

The state consists of a single “hidden” vector h:

y hy = fW(ht—la wt)

T |
m> ht — tanh(Whhht_l —+ tha?t)

X Yt = Why ht

or, Yt = softmax(Wh,h¢)



RNN: Computational Graph




Time invariant systems

RNN: Computational Graph

Re-use the same weight matrix at every time-step

h0—>fW —>h1—>fW —>h2—>fW —>h3—>
W X1 X2 X3




Ouftputs added

RNN: Computational Graph: Many to Many

Y, Y2 Ys

T ! !
hy 1 10y 1 10y 16y 0
/T ! T




Loss modadules

RNN: Computational Graph: Many to Many/fvj - ‘

Y Ly Y 1 L Ys 1 ks Yr b
hO—>fW —>h1—>fW —>h2—>fW —>h3—>...—>h_|_




RNN: Computational Graph: Many to One




RNN: Computational Graph: One to Many

y3 y3 y3
h0—>fW—>h1 >fW >h2—>fW—>h3—>




Sequence to Sequence: Many-to-one +
one-to-many

One to many: Produce output
sequence from single input vector

Many to one: Encode input
sequence in a single vector
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Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

input layer

input chars:  “
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Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

hi = tanh(Whprhi—1 + Wenat)

hidden layer

input layer

input chars:

0.3 1.0 0.1 |W hhl-03
-0.1 ~ 0.3 > -0.5 | 0.9
0.9 0.1 -0.3 0.7
T b fwa
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
ﬂh!! “e!l “I!l “I!l



Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

target chars:

output layer

hidden layer

input layer

input chars:

ue!!

1.0
2.2

-3.0

4.1

|

0.3

-0.1

0.9

1
0
0
0
uh!!

Y
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Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

—_—

1
0
0
0
ﬂh ”




Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

“e”
Sample f,\

Softmax

output layer

hidden layer

input layer

input chars:

0.3
-0.1
0.9

1
0
0
0
“he

o lco-=0




Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

“e:\
Sample }

Softmax

output layer

hidden layer

input layer

input chars:

f
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A3 20
.00 .05
84 50
f f
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0 1
0 0
0 0
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Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer | -

input layer

input chars:  °

“o”
t
.03 .25 .11 .1
A3 .20 A7 .02
.00 .05 .68 .08
.84 .50 .03 .79
i 1 i i
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
-3.0 -1.0 1.9 -0.1
4.1 1.2 =10 2.2
N
03 1.0 0.1 |y hnl -0.3
0.1 0.3 -0.5 0.9
0.9 0.1 -0.3 0.7
[ O O A B2
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
o i = =



Backpropagation through time

Loss

7

/1

Forward through entire sequence to
compute loss, then backward through
entire sequence to compute gradient
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Truncated Bac

Loss
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Kpropagation through time

Run forward and backward
through chunks of the
sequence instead of whole
sequence



Truncated Backpropagation through time
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Loss
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Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps



Truncated Backpropagation through time

\J

Loss




Example: Text->RNN
THE SONNETS

by William Shakespeare y

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, _>
And only herald to the gaudy spring,
‘Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

‘When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
‘Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
‘Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

https://qgist.github.com/karpathy/d4dee56686718291f086
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train more
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\ train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.



Image Captioning

“straw” “hat” END

Whi

i CNNg,
Bl

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick



Recurrent Neural Network
“straw” “hat” END

START llstrawn llhatn

Convolutional Neural Network
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Image Captlonlng Example Results

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
suitcase on the floor branch grass with a frisbee the grass

i
I

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - 75 May 4, 2017




Image Captioning: Failure Cases

A woman is holding a
cat in her hand

A woman standing on a
2 beach holding a surfboard
A person holding a

computer mouse on a desk

&

Captions generated using neuraltalk2
All images are_CCO0 Public domain: fur
coat, handstand, spider web, baseball

~ " Abird is perched on
1~ atree branch

A manin a
baseball uniform
throwing a ball

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 10 -

76 May 4, 2017



- . Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

hy = tanh(Wpphe—1 + Waepay)

hi_
R B L_» H — tanh ((Whh Wha:) ( ;tl))

t-1 T t .
- | o — tanh (W ( t_1)>
X 4




- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Backpropagation from h,
to h,, multiplies by W
(actually W, . T)

4 N\
hy = tanh(Wyphi—1 + Wypay)
i —tanh [ (W, W) [0
ht 1_4__» . L: ht an ( hh ha:) z
- T g = tanh (W (h;*))
t




Bengio et al, “Learning long-term dependencies with gradient descent

| ] L}
Va n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
4 4
W—> — > tanh W—>9—> tanh W—> — > tanh W*?—' tanh
h0 <> stack II\—> h1 1> stack —> h2 ——> stack II\—> h3 1> stack —> h4
A A J A A J
I I I I
X1 X2 X3 X4

Computing gradient
of h, involves many
factors of W

(and repeated tanh)



Vanilla RNN Gradient Flow

Al

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

N
A
—

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients



Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

a Y d
W—> — > tanh W-’?Z tanh W—> < tanh W—> < tanh
oIl oIl bl J
h. —t——> stack —> h, —T——> stack —> Q. —T——> stack —> . —T——> stack —> h
0 < 1< 2 < 3 <« —— 4
L T T J L ) L I
X1 X2 X3 X4

Computing gradient

Largest singular value > 1:
Exploding gradients

of h, involves many
factors of W
(and repeated tanh)

Largest singular value < 1:
Vanishing gradients

. Gracﬁent. clzllpplng:.ScaIe |
gradient if its norm is too big
grad_norm = np.sum(grad * grad)

if grad_norm > threshold:
grad *= (threshold / grad_norm)



Vanilla RNN Gradient Flow

Al

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”’, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Computing gradient
of h, involves many
factors of W

(and repeated tanh)
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Al

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients
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EN

— Change RNN architecture



Long Short Term Memory (LSTM)




Long Short Term Memory (LSTM)

Vanilla RNN

h, = tanh (W (ht—l

Tt

)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation

1007

LSTM
) o
f _ o W (ht—l)
0 o Ty
g tanh

¢t =fOc_1+10g
hy = o ® tanh(c;)




Long Short Term Memory (LSTM)

[Hochreiter et al., 1997] f. Forget gate, Whether to erase cell
i: Input gate, whether to write to cell

g: Gate gate (?), How much to write to cell

vector from o: Output gate, How much to reveal cell
below (x)
X sigmoid | — | i
h sigmoid | — | f 1 o
W f . o W hi—1
vector from sigmoid | — | o ol — o Tt
before (h) g tanh
tanh — 149 .
cc=f0Oc_1+10g

4h x 2h 4h 4*h h: = 0 ® tanh(c;)



Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

Ve N
C O — + — C >
t-1 t
f
> f
—>|—L> : i
. ] fl_ o hi—1
" ?»g_r’c) taih z) ] @ W( Tt )
h — > stack . > () —> — > d o
t-1 \_ f O © htj ce=f0Oc-_1+i0g

| h: = 0 ® tanh(c¢;)



Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]
Backpropagation from c, to

Ve Y c,, only elementwise
multiplication by f, no matrix
C > O —> + > C > .
t-1 < T « ), +— t = multiply by W
- f
> | ) o
W— _L’Q tanh f — 2 W hi—1
—> g—I l 0 o iy
tanh
h — T stack @ > h g
t-1 K ? > 0O ht/ Ct:f@ct_l—l_?:@g

| hy = 0 ® tanh(c;)



Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

— > stack
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—
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Similar to ResNet!
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Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]

Uninterrupted gradient flow!

-
c - . N g R N N
m . ma il w— O O
0~ p— 1= C1* T CZ* T C3
f f l f l
W— ;} ® talnh W— ;}, ® t=1nh
_\—P st?ck o ©) —~ h _ —\—P St?ck o @) — ht 7_»
| |
-
In between:
Highway Networks
Similar to ResNet! g="T(z,Wr)

y=9gO0H(x,Wg)+(1-9)0z

Srivastava et al, “Highway Networks”,
ICML DL Workshop 2015



Multilayer RNNs

-1
hl = tanh W' (ht )

hi_y
h € R™ W' [n x 2n]
LSTM: W [4n x 2n]

1 sigm
o _ | sigm W hi_l
0 sigm B
g tanh

=f0c_1+i0g
hi = 0 ® tanh(ct)

depth




Other RNN Variants

GRU [Learning phrase representations using rnn
encoder-decoder for statistical machine translation,
Cho et al. 2014]

rg= U(Wmfrmt + thr‘ht—l + br)

Zt = U(szﬂjt + thht—l + bz)

hy = tanh(Wynxe + Win(re © hy—1) + bp)
he =2t © hia +(1_Zt)®l;ft

[LSTM: A Search Space Odyssey,
Greff et al., 2015]

[An Empirical Exploration of
Recurrent Network Architectures,
Jozefowicz et al., 2015]

MUT1:

x
r

R

MUT2:

hev1

MUT3:

lh‘H—l

- 0 n

“+

-+

sigm(W,z; + b)

sigm( Wiz, + Wichs + B

tanh{Why(r & hy) + tanhiz;) + by) & 2
@ (1 —z)

sigm( Wy + Whehy + 82)

sigm(x; + Wiehe + b))

tanh({Whn(r @ he) + Waeaz: + bu) © 2
hi@(1—z)

sigm( W + Wi, tanh{hy) + 5.)
sigm(Werze + Whely + by)
tanh{Whplr © hy) + Wepzy + by) © 2
ki @ {1 —z)



Image Captioning with Attention

RNN focuses its attention at a different spatial location
when generating each word

14x14 Feature Map

[A___
bird
flying
over

a

body
of
water

1. Input 2. Convolutional 3, RNN with attention 4. Word by
Image Feature Extraction over the image word

generation
\. A

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.



Image Captioning with Attention

S

Image:
HxWx3

CNN

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual

Attention”, ICML 2015

Features:

LxD
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Distribution over
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Image Captioning with Attention

Image:
HxWx3

CNN

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual

Attention”, ICML 2015

Features:
L x

Weighted
combination
of features

—» | hO

Distribution over

L locations

al

T

Weighted
features: D

&
& = E PiU;
i=1



Image Captioning with Attention

Distribution over

L locations
a1l
| CNN —P | h0 —»| h1
Featyres: /\
Image: L x
HxWx3 Weighted : 1
features: D | © y
Weighted
Xu et al, “Show, Attend and Tell: Neural Combination FirSt Word

Image Caption Generation with Visual

Attention”, ICML 2015 of features



Image Captioning with Attention

Distribution over  Distribution

L locations over vocab
al a2 d1
CNN —P | ho
Featyres
Image: L x

HxWx3 Weighted 1 1

features: D | © y
Weighted

Xu et al, “Show, Attend and Tell: Neural Combination FirSt Word

Image Caption Generation with Visual

Attention”, ICML 2015 of features



Image Captioning with Attention

Distribution over  Distribution
ocation over vocab

al a2 d1 a3 d2

\/ CNN — | ho h1 o o

Image: L x
HxWx3 Weighted
eatu?es: D | ? y1 22| | ¥2
Weighted
Xu et al, “Show, Attend and Tell: Neural Combination

Image Caption Generation with Visual

Attention”, ICML 2015 of features



Image Captioning with Attention

bird flying over body water

Soft attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.



Image Captioning with Attention

= s .

A woman is throwing a frisbee in a park.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with

A stop sign is on a road with a
mountain in the background.

|

a teddy bear. in the water. trees in the background.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.



Summary

= RNN is flexible in architectures
= Vanilla RNNs are simple but don't work very well

» Common to use LSTM or GRU: their addifive interactions improve gradient
flow

» Backward flow of gradients in RNN can explode or vanish.
» Exploding is controlled with gradient clipping.
» Vanishing is controlled with additive interactions
» Better/simpler architectures are a hot topic of current research

» Better understanding (both theoretical and empirical) is needed



Thank you!




