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Empirical Risk
Deep Learning

convolution rectification normalization downsampling

aka multilayer perceptron
aka artificial neural networks

parameters = winput = x output = f(x; w)

RS [w] =
1

N

N�

k=1

loss (f(xk; w), yk)
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

#params = 
11*11*3*96+5*5*256+384*3*3
+384*3*3+256*3*3
=50,464

#params = 
6*6*256*4096+4096*4096+4096*1000=58.6M



Generalization: Population vs. Empirical RisksGeneralization in Machine Learning
Given: i.i.d. sample S = {z1,…,zn} from dist D
Goal: Find a good predictor function f

Minimize using SGD!unknown!
Empirical risk
(training error)

Population risk
(test error)

RS[f] = 1
n

n�

i=1
loss(f; zi)R[f] = Ezloss(f; z)

Generalization error: R[f] � RS[f]

How much empirical risk underestimates population risk

We can compute RS… When is it a good proxy for R?

(Test/Validation Loss; if 
the loss is 0/1 indicator 
function, then called 
‘test error’) 

(Training Loss) 



n=50,000
d=3,072
k=10

CIFAR10

Model parameters p/n
Train 
loss

Test 
error

CudaConvNet 145,578 2.9 0 23%

CudaConvNet
(with regularization)

145,578 2.9 0.34 18%

MicroInception 1,649,402 33 0 14%

ResNet 2,401,440 48 0 13%

What happens when I turn off the regularizers?

Recht 2017 FoCM. 



Global optima found as zero training error

CIFAR10 with random labels
n=50,000
d=3,072
k=10

CudaConvNet MicroInception

From Ben Recht 2017 FoCM



Cifar10 with randomized experiments

From Ben Recht 2017 FoCM: training faster, generalize better

MicroInception

n=50,000
d=3,072
k=10
p=1,649,402



Big models does not overfit…A puzzle: why non overfitting with deep nets without regularization?

Tommy Poggio, 2018



Big models may overfit test loss, but 
generalize well in test errorDeep nets loss and classification puzzle: solved.

Tommy Poggio, 2018



New challenges to understanding

´ Big (overparametric) models with SGD may find global optima efficiently

´ Big (overparametric) models may generalize well

´ Why? Possible answers:
´ Global optima of overparametric empirical risks are degenerate, favor for SGD

´ The landscape of empirical risks of overparametric models might be simple

´ Gradient based algorithms tend to find max margin models which generalize 
well 

Deep  
models

Models where p>20n are common



Recall: SGD behaves like Gradient 
Descent Langevin dynamics (SDE)

 
Langevin equation

with the Boltzmann equation as asymptotic “solution”

dw
dt

= −γ t∇V (w(t), z(t))+ γ t 'dB(t)

p(w) ~ 1
Z
= e

−V (w)
T



SGD/GDL selects larger volume minima 
e.g. degenerate

 
GDL ~ SGD (empirically)



 
Concentration because of high dimensionality

Poggio, Rakhlin, 
Golovitc, Zhang, 
Liao, 2017 



Summary

´ For overparametric deep networks, there are many degenerate (flat) 
optimizers, including the global minima

´ Gradient Descent Langevin dynamics finds with overwhelming probability 
the flat, large volume global minima (zero-training loss), and SGD behaves 
in a similar way empirically



Topology and Geometry of Empirical 
Risk Landscapes for Multilinear and 2-
Layer Rectified Networks
Based on Joan Bruna et al.







Non-convexity ≠ Not optimizable

• We can perturb any convex function in such a way it is no longer 
convex, but such that gradient descent still converges.  

• E.g. quasi-convex functions.



Non-convexity ≠ Not optimizable

• We can perturb any convex function in such a way it is no longer 
convex, but such that gradient descent still converges.  

• E.g. quasi-convex functions. 

• In particular, deep models have internal symmetries.

F (✓) = F (g.✓) , g 2 G compact.



Sublevel sets and topology

•Given loss                         we consider its representation in terms 
of level sets:  

•A first notion we address is about the topology of the level sets    . 

• In particular, we ask how connected they are, i.e. how many 
connected components       at each energy level   ? 

Analysis of Non-convex Loss Surfaces

E(✓) , ✓ 2 Rd ,

Nu

⌦u

E(✓) =

Z 1

0
1(✓ 2 ⌦u)du , ⌦u = {y 2 Rd ; E(y)  u} .

u



Topology of Non-convex Risk Landscape



Weaker: P.1, no spurious local valleys3.1 Spurious valleys and connectivity of sub-level sets

Given a parameter space Θ and a loss function L(θ) as in (2), for all c ∈ R we define
the sub-level set of L as

ΩL(c) = {θ ∈ Θ : L(θ) ≤ c}.

We consider two (related) properties of the optimization landscape. The first one is
the following:

P.1 Given any initial parameter θ0 ∈ Θ, there exists a continuous path θ : t ∈ [0, 1] #→
θ(t) ∈ Θ such that:

(a) θ(0) = θ0

(b) θ(1) ∈ argminθ∈Θ L(θ)

(c) The function t ∈ [0, 1] #→ L(θ(t)) is non-increasing.

With a little abuse of notation, in the following we denote θt = θ(t). Since, in practice,
the loss (2) is minimized with a SGD type algorithm, then property P.1 is a desirable
property, if we wish the algorithm to converge to an optimal parameter. As pointed out
in [14], property P.1 implies that L has no strict poor (i.e. non global) local minima.
The absence of generic (i.e. non-strict) bad local minima is guaranteed if the path θt
is such that the function L(θt) is strictly decreasing. For many activation functions
used in practice (such as the ReLU ρ(z) = z ∧ 0), the parameter θ determining the
function Φ(·; θ) is determined up to the action of a symmetries group (e.g., in the case
of the ReLU, ρ is an homogeneous function). This already prevents us from having
strict minima: for any value of the parameter θ ∈ Θ there exists a manifold Uθ ⊂ Θ
intersecting θ along which the loss function is constant. Property P.1 tells us something
more than the absence of poor strict local minima. A way to interpret such property
could be with defining the concept of spurious valleys.

Definition 1 We define a spurious valley as a connected component of a sub-level set
ΩL(c) which does not contain global minima of the loss L(θ).

In view of the above definition, property P.1 can be re-phrased as: the loss function

admits no spurious valleys. This means that it is always possible to move from any
point in the parameter space to a global minima, without increasing the loss.

The second property we consider is strictly stronger than P.1:

P.2 ΩL(c) is path-connected for all c.

This property not only implies that there is no spurious valley, but also that there is

only one global valley: any two optimal parameter values can be connected with a
path along which the loss function is constant.
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•A first notion we address is about the topology of the level sets    . 

– In particular, we ask how connected they are, i.e. how many connected 
components       at each energy level   ?  

•This is directly related to the question of global minima: 

•We say E is simple in that case. 

•The converse is clearly not true.

Analysis of Non-convex Loss Surfaces

Nu

⌦u

u

Proposition: If Nu = 1 for all u then E
has no poor local minima.

(i.e. no local minima y⇤ s.t. E(y⇤) > miny E(y))



Deep Linear Networks



Overparametric DLN -> Simple connectivity





Proof Sketch

Given ⇥

A
= (WA

1 , . . . ,WA
K ) and ⇥

B
= (WB

1 , . . . ,WB
K ),

we construct a path �(t) that connects ⇥A
with ⇥

B

st E(�(t))  max(E(⇥

A
), E(⇥

B
)).

• Goal: 

• Main idea: 

• Simple fact: 

1. Induction on K.

2. Lift the parameter space to

fW = W1W2: the problem is convex ) there

exists a (linear) path e�(t) that connects ⇥A
and ⇥

B
.

3. Write the path in terms of original coordinates by factorizing e�(t).

If M0,M1 2 Rn⇥n0
with n0 > n,

then there exists a path t : [0, 1] ! �(t)
with �(0) = M0, �(1) = M1 and

M0,M1 2 span(�(t)) for all t 2 (0, 1).
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Corollary 7 For two-layer NNs Φ(x; θ) = UρWx, the empirical loss function (12)
admits no spurious valleys in the over-parametrized regime

p ≥ N .

Proof We just need to notice that since the functions ψw ∈ VX are functions on X
and since |X | ≤ N , then dim(VX ) ≤ N . The proof is concluded by applying Theorem
5.

Moreover, we notice that the minimum empirical loss is 0 when that the kernelized
input data points ϕ(x1), . . . ,ϕ(xN) are independent elements of VX .

This result is in line with previous works that considered the landscape of empirical
risk minimization for half-rectified deep networks [25, 27]. However, its proof illus-
trates the danger of studying ERM landscapes in the overparamatrised regime, since
it bypasses all the geometric and algebraic properties needed in the population risk
setting – which may be more relevant to understand the generalization properties of
the model.

4.3 Linear Networks

In the case of linear networks one can show that the absence of spurious valleys holds
in non-over-parametrized regimes as well and for networks of any depth:

Φ(x; θ) = WK+1 · · ·W1x , (13)

where θ = (WK+1,WK , . . . ,W2,W1) ∈ Rn×pK+1 × RpK+1×pK × · · ·Rp2×p1 × Rp1×n.

Theorem 8 For linear networks (13) of any depth K ≥ 1 and of any layer widths
pk ≥ 1, k ∈ [1, K + 1], and input-output dimensions n, m, the square loss function (2)
admits no spurious valleys.

This result improves the one proved in [14], since we do not need any assumptions
on the widths of the layers. It is also in line with other results for linear networks
[20]. While our result it is not informative on the order of saddle points, it holds
with no assumption on the rank of the weights Wk nor ΣX ,ΣXY . Our proof highlights
the structural symmetries of linear neural network architectures and it is reported in
Appendix A.3.

5 Proof technique

The proof of Theorem 5 consists of proving that property P.1 holds when p ≥ q. We
start by proving it when ρ(z) = z, i.e. in the case of linear networks

Φ(x; θ) = UWx. (14)
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Definition 3 Let VX
.
= span⟨{ψw : X → R : w ∈ Rn}⟩. We call effective intrinsic

dimension of the neural network Φ(x; θ) = UρWx the value q = dim(VX ). We say that
the network has finite effective intrinsic dimension if q is finite.

Notice that if (X, Y ) are distributed accordingly to an empirical probability dis-
tribution P̂ = N−1

∑N
i=1 δ(xi,yi), any network Φ(x; θ) = UρWx has effective intrinsic

dimension bounded by N .

Remark 4 Property (7) can be also understood in the framework of Reproducing
Kernel Hilbert Space (RKHS). Assume that there exists a kernel (i.e. continuous and
PSD) function K : Rn × Rn &→ R, with associated RKHS H (i.e. the space spanned
by the functions ϕ(x) : y ∈ Rn &→ K(x, y), for x ∈ Rn), such that the linear space
V defined in (6) is a finite linear subspace of the RKHS H. Then the scalar product
defined in (7) coincides with the inner product on H. This approach follows the ideas
of works [4, 28].

4 Main result

We now state the main result of our work.

Theorem 5 The loss function

L(θ) = E∥Φ(X ; θ)− Y ∥2

of any network Φ(x; θ) = UρWx with effective intrinsic dimension q < ∞ admits
no spurious valleys, in the over-parametrized regime p ≥ q. Moreover, in the over-
parametrized regime p ≥ 2q there is only one global valley.

The above result can be re-phrased as follows: if the network is such that any of
its output units Φi can be chosen from the whole space spanned by its filter functions
(i.e. from VX defined in (9)), then the associated optimization problem is such that
there always exists a descent path to an optimal solution, for any initialization of the
parameters. Indeed, the over-parametrized regime that we consider (p ≥ q) makes
possible to express all the output units Φi as any element of the filter functions space
VX .

We notice that the same optimal representation functions Φ(·; θ) could also be
obtained using a generalized linear model, where the representation function has the
linear form Φ(x; θ) = ⟨θ,ϕ(x)⟩, with the same underlying family of representation
functions VX . A main difference between the two models is that the former requires
the choice of a non-linearity, that is of any activation function ρ, while the latter
implies the choice of a kernel functions. The non-trivial fact captured by our result
is the following: when the capacity of network is large enough to match a generalized
linear model, then the problem of optimizing the square loss (2) of the network, which

7

Definition 3 Let VX
.
= span⟨{ψw : X → R : w ∈ Rn}⟩. We call effective intrinsic

dimension of the neural network Φ(x; θ) = UρWx the value q = dim(VX ). We say that
the network has finite effective intrinsic dimension if q is finite.

Notice that if (X, Y ) are distributed accordingly to an empirical probability dis-
tribution P̂ = N−1

∑N
i=1 δ(xi,yi), any network Φ(x; θ) = UρWx has effective intrinsic

dimension bounded by N .

Remark 4 Property (7) can be also understood in the framework of Reproducing
Kernel Hilbert Space (RKHS). Assume that there exists a kernel (i.e. continuous and
PSD) function K : Rn × Rn &→ R, with associated RKHS H (i.e. the space spanned
by the functions ϕ(x) : y ∈ Rn &→ K(x, y), for x ∈ Rn), such that the linear space
V defined in (6) is a finite linear subspace of the RKHS H. Then the scalar product
defined in (7) coincides with the inner product on H. This approach follows the ideas
of works [4, 28].

4 Main result

We now state the main result of our work.

Theorem 5 The loss function

L(θ) = E∥Φ(X ; θ)− Y ∥2

of any network Φ(x; θ) = UρWx with effective intrinsic dimension q < ∞ admits
no spurious valleys, in the over-parametrized regime p ≥ q. Moreover, in the over-
parametrized regime p ≥ 2q there is only one global valley.

The above result can be re-phrased as follows: if the network is such that any of
its output units Φi can be chosen from the whole space spanned by its filter functions
(i.e. from VX defined in (9)), then the associated optimization problem is such that
there always exists a descent path to an optimal solution, for any initialization of the
parameters. Indeed, the over-parametrized regime that we consider (p ≥ q) makes
possible to express all the output units Φi as any element of the filter functions space
VX .

We notice that the same optimal representation functions Φ(·; θ) could also be
obtained using a generalized linear model, where the representation function has the
linear form Φ(x; θ) = ⟨θ,ϕ(x)⟩, with the same underlying family of representation
functions VX . A main difference between the two models is that the former requires
the choice of a non-linearity, that is of any activation function ρ, while the latter
implies the choice of a kernel functions. The non-trivial fact captured by our result
is the following: when the capacity of network is large enough to match a generalized
linear model, then the problem of optimizing the square loss (2) of the network, which

7





Polynomial Activations

is in general a highly non-convex object, satisfies an interesting optimization property
in view of the local descent algorithms which are used in practice to solve it.

The proof of Theorem 5 is reported in Section 5. We show how to construct a
descent path (i.e. a path which verifies property P.1) from any initial parameter value
to an optimal one, under the over-parametrized assumption p ≥ q. In the case p ≥ 2q,
we construct a path between any two optimal parameters, thus proving the existence
of a unique global valley.

In the next sub-sections we discuss three cases of interest which fit the assumptions
of the theorem. The first (Corollary 6) applies the result to the case of networks
with polynomial activation functions ρ. Corollary 7 applies Theorem 5 to the case of
empirical data distributions, i.e. when (X, Y ) ∼ P̂ = N−1

∑N
i=1 δ(xi,yi), and finally

Theorem 8 shows that multilinear regression has no spurious valleys for any arbitrary
number of layers and without overparametrization.

4.1 Polynomial Neural Networks

A case that can be addressed with Theorem 5 is the case of polynomial activation
functions, i.e.

ρ(z) = a0 + a1z + · · ·+ adz
d. (10)

In this case, we have:

Corollary 6 For two-layers NNs Φ(x; θ) = UρWx, if the activation function ρ is
of the form (10), then the square loss function (2) admits no spurious valleys in the
over-parametrized regime

p ≥
d

∑

i=1

(

n+ i− 1

i

)

1{ai ̸=0} = O(nd). (11)

The proof consists of noticing that in this case the dimension of the intrinsic subspace
V is given by (11) and by applying Theorem 5. It is detailed in the Appendix A.2.

4.2 Empirical Risk Minimization

We now assume that the loss is evaluated on a set of data {(xi, yi)}
N
i=1, i.e.

L(θ) =
1

N

N
∑

i=1

∥Φ(xi; θ)− yi∥
2 , (12)

obtained by replacing the data distribution P with the empirical measure P̂ = N−1
∑N

i=1 δ(xi,yi)

in the oracle loss (2). The only assumption we make here on the activation function
ρ(z) is that it is continuous. Then we have:
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From Topology to Geometry

• The next question we are interested in is conditioning for descent. 
• Even if level sets are connected, how easy it is to navigate through 

them?  
• How “large” and regular are they?

easy to move from one energy

level to lower one

hard to move from one energy

level to lower one













• Compute length of geodesic in      obtained by the algorithm and 
normalize it by the Euclidean distance. Measure of curviness of 
level sets. 

Numerical Experiments

⌦u

CNN/CIFAR-10 LSTM/Penn

Under review as a conference paper at ICLR 2017

(1a) (1b)

(2a) (2b)

(3a) (3b)

(4a) (4b)

(5a) (5b)

Figure 1: (Column a) Average normalized geodesic length and (Column b) average number of beads
versus loss. (1) A quadratic regression task. (2) A cubic regression task. (3) A convnet for MNIST.
(4) A convnet inspired by Krizhevsky for CIFAR10. (5) A RNN inspired by Zaremba for PTB next
word prediction.

The cubic regression task exhibits an interesting feature around L
0

= .15 in Table 1 Fig. 2, where
the normalized length spikes, but the number of required beads remains low. Up until this point, the
cubic model is strongly convex, so this first spike seems to indicate the onset of non-convex behavior
and a concomitant radical change in the geometry of the loss surface for lower loss.

4.2 CONVOLUTIONAL NEURAL NETWORKS

To test the algorithm on larger architectures, we ran it on the MNIST hand written digit recognition
task as well as the CIFAR10 image recognition task, indicated in Table 1, Figs. 3 and 4. Again,
the data exhibits strong qualitative similarity with the previous models: normalized length remains
low until a threshold loss value, after which it grows approximately as a power law. Interestingly,
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Summary

´ Overparameterization may lead to simple risk landscapes with flat global 
minima

´ GD/SGD may find flat global minima
´ GD may find max margin global minima



Thank you!


