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Case Study: AlexNet

[Krizhevsky et al. 2012]

58 268 703e \dense

13 dense dense)

1000

128 Max

Full (simplified) AlexNet architecture: P -~ P i
[227x227x3] INPUT L B Eai

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad —
[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer #params =
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2 _ 11x11*3%96+5%5%256+384*3%3
[13x13x256] NORM2: Normalization layer +384%3%3+256%3%3

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 =50,464

[13x13x384] CONV4: 384 3xa3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 _
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons } #params =

204 2048

[4096] 4096 neurons 6*6*256*4096+4096*4096+4096*1000=58.6 M

[1 000] 1 000 neurons (CIaSS SCOI’eS) Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
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Generalization: Population vs. Empirical Risks

Given: ii.d. sample S = {z),...,zn} from dist D

Goal: Find a good predictor function f

Rlf] = E loss(f; 2) Rslf] = + Z loss(f; zi)

Population risk Ermpirical risk
alidation Loss; if (test error) P
the/loss is 0/1 indicator (training error)

fidnction, then called  UNkNownN! Minimize using SGD!
‘test error’)

(Training Loss)

Generalization error: R[f] — Rs]f]

How much empirical risk underestimates population risk

We can compute Rs... RAASARSNIER{eleleRolge xR lolalal;



Recht 2017 FOCM.
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k=10
What happens when | turn off the regularizers?

Train Test
Model parameters p/n loss  error
CudaConvNet 145,578 2.9 0 23%
CudaConvNet 145,578 2.9 0.34 | 8%
(with regularization)
Microlnception 1,649,402 33 0 | 4%
ResNet 2,401,440 48 0 1 3%




Global optima found as zero fraining error

n=50,000
CIFARI10O with random labels  d=3,072
k=10

CudaConvNet

= ftrue labels = ftrue labels
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Cifar10 with randomized experiments

2.5

2.0

average loss

0.5

0.0

Microlnception

&= random labels
v—v shuffled pixels
m—a random pixels ||
o=@ gaussian

& true labels

4 6 8 10 12 14 16 18

thousand steps

From Ben Recht 2017 FOCM: training faster, generalize better

n=50,000
d=3,072
k=10
p=1,649,402



Big models does not overtfit...

Training data size: 50000
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Big models may overfit test loss, but
generalize well in test error

Training data size: 50000
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New challenges to understanding

» Big (overparametric) models with SGD may find global optima efficiently
= Big (overparametric) models may generalize well
= Why?¢ Possible answers:
» Global optima of overparametric empirical risks are degenerate, favor for SGD
» The landscape of empirical risks of overparametric models might be simple

» Gradient based algorithms tend to find max margin models which generalize
well

Error

* >

f
Deep
models

Model Complexity

Models where p>20n are common



Recall: SGD behaves like Gradient
Descent Langevin dynamics (SDE)

Dy Y OH0,2(0)+7, B0

with the Boltzmann equation as asymptotic “solution”

1 _V(w)

wy~—=e T
p(w)~~



SGD/GDL selects larger volume minima
e.g. degenerate

GDL ~ SGD (empirically)

Potential Function

Weight W, Weight W,
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Concentration because of high dimensionality
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Summary

» [For overparametric deep networks, there are many degenerate (flat)
optimizers, including the global minima

» Gradient Descent Langevin dynamics finds with overwhelming probability
the flat, large volume global minima (zero-training loss), and SGD behaves

in a similar way empirically



Topology and Geometry of Empirical
Risk Landscapes for Multilinear and 2-
Layer Rectified Networks

Based on Joan Bruna et al.




¢ \\le consider the standard ML setup: X 1
P —_ E Z 5(:13?:,’3/1')
(<

¢(z) convex

E(©) =E x v, pU®(X;0),Y) + R(6)
E(©) = Eqx.yyer (B(X;6),Y) .
R(©): regularization

e Population loss decomposition (@ka "fundamental theorem of ML)
E(©")= E©") +E©") - E©O") .
= i 4

-

training error generalization gap



* Ve first address how overparametrization affects the energy
landscapes E(0), E(O).

e Goal 1: Study smple topological properties of these landscapes for
half-rectified neural networks.

e Goal 2. Estmate simple geometric properties with efficient, scalable
algorithms. Diagnostic toal.



Non-convexity = Not optimizaole

*\\le can perturlb any convex function in such a way it is no longer
convex, but such that gradient descent still converges.

* - 0. guasi-convex functions.



Non-convexity = Not optimizable

F(0) =F(g9.0) , g € G compact.
o \\e can perturb any convex function in such a way 1t s no longer
convex, but such that gradient descent stil converges.

* - 0. Quasi-convex functions.
* N particular, deep Mmodels have Interal symmetries.



Sublevel sets and topology

*Given loss E(9) ,0 € R? , we consider its representation in terms
of level sets!

E(G)z/oool(HEQu)du, Q. ={yeR?; E(y) <u}

u

o A first notion we address is about the topclogy of the level sets

e |n particular, we ask how connected they are, 1.e. how many
connected components N, at each energy level u”?



Topology of Non-convex Risk Landscape

o A first notion we address is about the topology of the level sets
—|In particular, we ask how connected they are, i.e. how many connected
components IV, at each energy level u?
* [his is directly related to the guestion of global minima:

Proposition: If N, = 1 for all v then E
has no poor local minima.
(i.e. no local minima y* s.t. E(y*) > min, E(y))

VA /A YN/ [ 1 If | ~ NOY OV
*\\e say £ Is simple In that case

e [Ne converse Is Clearly not true.




Weaker: P.1, no spurious local valleys

Given a parameter space © and a loss function L(f) as in (2), for all ¢ € R we define

the sub-level set of L as
Quic)={0 €0 : L) <c}

We consider two (related) properties of the optimization landscape. The first one is
the following:

P.1 Given any initial parameter 6y € O, there exists a continuous path 6 : ¢ € [0, 1] —
6(t) € © such that:

6(0) = 6y
6(1) € argmingeg L(0)

(a)
(b)
)

(¢) The function ¢t € [0,1] — L(A(t)) is non-increasing.




Deep Linear Networks

e SOome authors have considered linear "deep” models as a first step
towards understanding nonlinear deep models:

E(Wi,...,Wk) =Ex y)up|Wi ... Wi X - Y% .
XeR", YeER™, W, RWXn-1

Theorem: [Kawaguchi’16] If ¥ = E(XX7) and E(XY7T)
are full-rank and ¥ has distinct eigenvalues, then E(O)
has no poor local minima.

e studlying critical points.
e later generalized in [Hardt & Ma'16, Lu & Kawaguchi'1 7]



Overparametric DLN -> Simple connectivity

EWn,...,Wk) =Exy)~p|Wk ... W1 X -Y|?.

Proposition: [BF’16]
1. If ny > min(n,m), 0 < k < K, then N,, =1 for all w.

2. (2-layer case, ridge regression)
E(W1,W2) = E(x,y)~pl|WeW1 X — Y||2 + AW + [|[W2*)
satisfies N, = 1 V u if ny > min(n,m).

*\/\e pay extra redundancy price to get smple topology.



E(Wi,...,Wk) = Egeyympl Wi ... Wi X = Y2

Proposition: [BF’16]
1. If ngy > min(n,m), 0 < k < K, then N, = 1 for all u.

2. (2-layer case, ridge regression)
E(W1, Ws) = E(x,v)~p[We W1 X — Y12+ A(||[WA|1* + [ W)
satisfies N, = 1 V u if ny > min(n,m).

*\\e pay extra redundancy price to get simple topology.
e [his simple topology is an "artifact” of the linearity of the network:

Proposition: [BF’16] For any architecture (choice of
internal dimensions), there exists a distribution
P(x,y) such that N, > 1 in the ReLU p(z) = max(0, z) case.



Proof Sketch

e oAl

Given 04 = (W{,..., W) and 68 = (WE,... WE),
we construct a path ( ) that connects ©4 with 68
st BE(v(t)) < max(E(64), E(68)).

e \ain idea:

1. Induction on K.

2. Lift the parameter space to W = W1Ws: the problem is convex =- there
exists a (linear) path 5(¢) that connects ©4 and ©5.

3. Write the path in terms of original coordinates by factorizing v(t).

e Simple fact:
If My, My, € R™" with n’ > n,
then there exists a path t: [0, 1] — ~(%)
with ’Y(O) — Mo, ’)/(1) — M1 and
My, My € span(y(t)) for all ¢t € (0,1).



Group Symmetries

'with L. Venturi, A. Bandeira, '17]
e How much extra redundancy are we paying to achieve N, = 1

instead of simply no poor-local minima’?

—In the multiinear case, we don't need ng > min(n, m)
+\We do the same analysis in the quotient space defined by the equivalence

CElonsho W~ W« W =WU , U € GL(R") .

Corollary [LBB’17]: The Multilinear regression
E(xy)~p||Wi... WX —Y|? has no poor local minima.

* Construct paths on the Grassmanian manifold of subspaces.

<+ Generalizes best known results for multiinear case (no assumptions on data
covariance).



Venturi-Bandeira-Bruna’' 18

(I)(.CU, (9) — WK—H SR Wl.CC - (13)
where 0 = (W1, Wk, ..., Wa, W) € RVPr+1 x RPE+1XPK x .. . RP2XPL x RPIXN,

Theorem 8 For linear networks (13) of any depth K > 1 and of any layer widths
pr > 1, k€ [l, K+ 1], and input-output dimensions n, m, the square loss function (2)
admits no spurious valleys.




Asymptotic Connectedness of Rel .U

e Good behavior is recovered with nonlinear Rel .U networks,
orovided they are sufficiently overparametrized:

e Setup: two-layer RelLU network:
®(X;0) =Wap(W1X), p(z) = max(0,2).W; € R™*" Wy € R™

Theorem [BF’16]: For any 64,08 ¢ R™*" R™,
with E(©14B}) < X, there exists path ~(t)
from ©4 and ©F such that
Vit,E(y(t)) <max(Ae€) and € ~ m™

3=

e Overparametrisation "wipes-out” local minima (and group
symmetries).

e Besult is based on local inearization of the Rel LU kemel (hence
exponential price).



Asymptotic Connectedness of Rel U

* Good behavior is recovered with nonlinear RellU networks,
orovided they are sufficiently overparametrized:

* Setup: two-layer RelLlU network:
®(X;0)=Wop(W1X), p(z) =max(0,2).W, € R™*" Wy € R™

Theorem [BF’16]: For any 04,05 ¢ R™*"? R™,
with E(©14:B}) < )| there exists path ()

from ©4 and ©F such that

Vt,E(y(t) < max(\e€) and € ~ m™w.

e Overparametrisation “wipes-out” local minima (and group
symmetries).

e [he bound is cursed by dimensionality, ie exponential in n..

 Open question. polynomial rate using Taylor decomp of p(z) ?



Kemels are back?

e [he underlying technique we described consists in ‘convexifying’
the problem, by mapping neural parameters ©

(I)(CIZ,@) — WkP(Wk—l . p(WlX))) y O = (Wl, co Wk) 3

to canonical parameters 8 = A(©) :

o(X;0) = (¥(X), A(©)) .



Kemels are back’?

* [he underlying technigue we described consists in “‘convexifying”
the problem, by mapping neural parameters ©

(I)(il?,@) = Wkp(Wk_l L p(WlX))) , O = (Wl, L Wk) y

to canonical parameters 8 = A(©) .
®(X;0) = (¥(X), A(0)) .
» Second layer setup: p({w, X)) = (A(w), ¥ (X)) .
Corollary: [BBV’17] If dim{A(w),w € R"} = ¢ < o0

and M > 2q, then E(W,U) = E|[Up(WX) —Y|?,
W € RMXN has no poor local minima if M > 2q.



VBB'18

Theorem 5 The loss function
L(6) = E[|®(X;6) - Y|

of any network ®(x;0) = UpWax with effective intrinsic dimension ¢ < oo admits
no spurtous valleys, in the over-parametrized reqgime p > q. Moreover, in the over-
parametrized regime p > 2q there is only one global valley.

We notice that the same optimal representation functions ®(-;6) could also be
obtained using a generalized linear model, where the representation function has the
linear form ®(xz;60) = (0, p(x)), with the same underlying family of representation
functions Vy. A main difference between the two models is that the former requires
the choice of a non-linearity, that is of any activation function p, while the latter
implies the choice of a kernel functions. The non-trivial fact captured by our result



Kemels are back”

e [he underlying technigue we described consists in ‘convexifying” the
problem, by mapping neural parameters @

O(2;0) = Wep(Wi—1...p(W1X))) , © = (W1,...Wy) ,
to canonical parameters g — A(@©)
®(X;0) = (¥(X), A(©)) .

e This is precisely the formulation of ERM in terms of Reproducing
Kemel Hilbert Spaces [Scholkopf, Smola, Gretton, Rosasco, ... ]
» Recent works developed RKHS for Desp Convolutional Networks
—[Mairal et al."17, Zhang, Wainwright & Liang '17]

—See also F. Bach's talk tomorrow [Bach'15].

—Open question: behavior of SGD in © in terms of canonical params?
Progress on maitrix factorization, e.g [Srebo'17]



Polynomial Activations

p(2) = ag+ a1z + - - + agz®. (10)

In this case, we have:

Corollary 6 For two-layers NNs ®(x;0) = UpWx, if the activation function p is

of the form (10), then the square loss function (2) admits no spurious valleys in the
over-parametrized regime

d )
n+1—1
Py ( )1{%#0} — O(n%). (11)
=1

1



Between linear and RelLlU: polynomial nets

e Quadratic nonlinearties p(z) = 2% are a simple extension of the
inear case, by lfting or "kernelizing"™:

p(Wz)=AwX , X =zz¥ , Aw = WiW{ k< -

*\\le have the following extension:

Proposition: If M > 3N?2, then the landscape of two-layer
quadratic network is simple: N, =1V w.

Proposition: If M, > 3N 2" v k < K , then the landscape of K-layer
quadratic network is simple: N, =1 V wu.

* Open question. Improve rate by exploiting Group symmetries”
Currently we only win on the constants.



—rom Topology to Geometry

* [Ne next question we are interested in is conditioning for descent.

e bven If level sets are connected, how easy 1t is 1o navigate through
them?

e How "large” and regular are they”

@ &

easy to move from one energy hard to move from one energy
level to lower one level to lower one



Hnading Connected Components

e Suppose By, By are such that E(6,) = E(63) = ug
—They are in the same connected component of $2y, iff
there is a path y(t), v(0) = 61,v(1) = 65 such that
Vite (0,1), E(y(t) <uo -

—Moreover, we penalize the length of the path:

Vie(0.1), E((t) < uo and /||»'y(t)||dt§ M.



Hnding Connected Components

e Suppose B, B9 are such that E(61) = E(02) = ug
—They are in the same connected component of §2q, ff
there is a path y(t), v(0) = 61,v(1) = 65 such that
Vite(0,1), E(y(t) <uo -

—Moreover, we penalize the length of the path:

Vte(0,1), E(v(t) <uo and /||7(t)||dt <M.

e Dynamic programming approach:
6, ®

6-0



Hnding Connected Components

e Suppose By, B are such that E(01) = E(0y) = ug
—They are in the same connected component of §24, iff
there is a path ¥(t), v(0) = 601,v(1) = 0y such that
Vie (Oal) ) E(’Y(t)) < ugp -

—Moreover, we penalize the length of the path:

Ve (0,1), E(y(t) <uo and /||7(t)||dt <M.

e Dynamic programming approach:

H
01 & 3 9’;
‘@ 6/— 2! ;92
f3 = arg  min 160 — 0| - '

0cH; E(0)<uo G>9



Hnding Connected Components

e Suppose B, B9 are such that E(61) = E(02) = ug
—They are in the same connected component of §2q, iff
there is a path y(t), v(0) = 61,v(1) = 65 such that
Vie (071) ) E(’Y(t)) < ug -

—Moreover, we penalize the length of the path:

Vte(0,1), E(v(t) <up and /||7(t)||dt <M.

e Dynamic programming approach:

H
o 80
= L2 6% o ’ @
f3 = arg  min 160 — 6| -

0cH; E(0)<ug 0-0



Hnding Connected Components

e Suppose By, B are such that E(61) = E(6y) = ug
—They are in the same connected component of §24, iff
there is a path y(t), v(0) = 01,v(1) = 6 such that
Vie (071) ) E(’Y(t)) < ug .

—Moreover, we penalize the length of the path:

vite(0,1), E((t) <up and /||7(t)||dt <M.

e Dynamic programming approach:

H
@ [N (9‘;
0 + 62 0, ¢ ;
em = 9 ‘ ’
@

f3 = arg  min 10 — O || -
0cH; E(0)<uo 0,0



Numerical Experments

Normalized Length

» Compute length of geodesic in Q,, obtained by the algorithm and
normalize 1t by the Euclidean distance. Measure of curviness of
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Analysis and perspectives

e #of components does not increase: No detected poor local
minima so far when using typical datasets and typical architectures
(at energy levels explored by SGD).

*| evel sets become more iregular as energy decreases.

* Presence of "energy barrier'?

e Kemels are back? CNN RKHS

e Open: "sweet spot” between overparametrisation and overfiting”?
* Open: Rale of Stochastic Optimization in this story”?

hard to optimize easy to optimize

no overfitting overfitting

Spot model size




Summary

= Overparameterization may lead to simple risk landscapes with flat global
minima

» GD/SGD may find flat global minima

» GD may find max margin global minima



Thank you!




