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Supervised Learning

= Data: (X, y)
X is input, y is output/response (label)

» Goal: Learn a functfion fo map x>y

=» Examples:
» Classification,
= regression,
» object detection,
®» semantic segmentation,

®» mage capftioning, etc.




Unsupervised Learning

» Data: x
Just input data, no output labels!

» Goal: Learn some underlying hidden structure of the data

=» Examples:
» (Clustering,

» dimensionality reduction (manifold learning),

» feature learning,

» density estimation,
Generative Models

Given training data, generate new samples from same distribution

B4 -

Training data ~ p,.(X) Generated samples ~p__.(X)

» Generating samples, etc.

Want to learn p_ . (x) similar to p,_,_(X)




Today: Reinforcement Learning

= Problems involving an agent

® |nteracting with an environment,

» which provides numeric reward
signals

State s, Reward r,

Action a,
Next state s

» Goal:

Environment

» | carn how to take actions in
order fo maximize reward




Playing games against human champions

May 11th, 1997
Computer won world champion of chess dvn
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Ovutline

» What is Reinforcement Learninge
» Markov Decision Processes
» Bellman Equation as Linear Programming

» Q-Learning

» Policy Gradients
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Car-Pole Control Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright
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Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise



Mathematical Formulation of
Reinforcement Learning

= Markov property: Current state completely characterizes the state of the
world

Defined by: (87 AR, P, fy)

. set of possible states

. set of possible actions

. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair

- discount factor

R2EFAX W




» At time step =0, environment samples initial state so~ p(so)
» Then, for =0 until done:

» Agent selects action at

®» Environment samples reward ri~R( . | st, Qi)

®» Environment samples next state st+1~P(. | st; at)

» Agent receives reward ri and next state st+1

®» A policy piis a function from S to A that specifies what action to take in
each state

» Obijective: find policy that maximizes the cumulated discounted reward




A simple MDP: Grid World

actions = { states
1. right — *
2. left <+— Set a negative “reward”
3. u I * for each transition
- (e.9.r=-1)
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions




A simple MDP: Grid World
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Random Policy Optimal Policy




The optimal policy n*
We want to find optimal policy it* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: * = argmfrlxIE {Z 'ytrtlw} with sg ~ p(8g), a; ~ 7(-|8¢), Se11 ~ p(-|8¢, az)

>0




Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, r,, s;, a,, I, ---

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
VT(s) =E Z’ytrt|so =8,

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E [Z 'ytrt|so = 8,aq¢ = a, ’/T]

>0




Bellman Equation of Optimal Value

Optimal Value Function V* : § — R = x™* satisfied the following nonlinear fixed point equation

x* (i) = I;léli( ra(?) + VZPa(i,j)a}*(j)
JES

where a policy 7* is an optimal policy if and only if it attains the optimality of the Bellman
equation.

In the continuous-time analog of MDP, 1.e., stochastic optimal control, the Bellman equation
1s the HIB
Exact solution methods: value iteration, policy iteration, variational analysis
What makes things hard:
Curse of dimensionality + Modeling Uncertainty



Bellman Equation as LP (Farias and Van Roy, 2003)

The Bellman equation is equivalent to

minimize elz

subject to (I —yP,)x —1re, >0, a€ A, Z )=1,e>0.

o Exact policy iteration is a form of simplex method and exhibits strongly
polynomial performance (Ye 2011)

e Again, curse of dimensionality:
» Variable dimension = |§]|.

* Number of constraints = |S| x |A].




Duality between Value Function and Policy

Let A; , > 0 be the multiplier associated with the ¢-th row of the primal constraint vP,z+r, < x.
The dual problem is

maximize A7, a€ A

subject to Z(I —vPHX,=¢e, X >0, ac A
acA

where the dual variable is high-dimensional A\ = (A\g)qea € RMISI

The optimal dual solution \* = (A} ,)ies,ac is sparse and has exact |S| nonzeros. It
satisfies

* T \—1
(Ai,u*(i));gs = (I —aPy) e,
and X}, =0 if a # u"(i).

Finding the optimal policy u* = Finding the basis of the dual solution \*



Online Value-Policy Ilteration
(Mengdi Wang 2017, arXiv:1704.01869)

Stochastic primal-dual (value-policy) algorithm
e Input: Simulation Oracle M, n=|S|, m = |A|, a € (0,1).
o Initialize x(¥) and X\ = ()\E,O) : u € A) arbitrarily.
e Fork=1,2,..., T

Sample i, uniformly from S§ and sample v, uniformly from A.
Sample next state j, and immediate reward g; j ,, conditioned on (i, uyx) from M.
Update the iterates by

D) (e D (0 ) )

(k—3
Uy

(k—1)

)\ — >\Uk _|_ m’Yk (X(k_l) — an (X(k_l) . ejk) eik _ ngikjkuk eik>7

1
T VA T

Project the iterates orthogonally to some regularization constraints
1 1
x(F) = Ny xtk=32) AF) = k=2,

o Ouput: Averaged dual iterate A = % Zszl A(K)




Near Optimal Primal-Dual Algorithms

Method Setting Sample Complexity | Run-Time Complexity | Space Complexity | Reference
Phased Q-Learning ~ discount factor, (1|‘_Sg)“§|€2 In 5 (1|‘_9|7|)“§|€2 In 3 |S||A] [17]
e-optimal value
Model-Based Q-Learning | ~ discount factor, (1|fU;§L2 In ‘S!“‘” NA |S|2| A 1]
e-optimal value
Randomized P-D ~ discount factor, % % |S||A| [25]
e-optimal policy
Randomized P-D ~ discount fac- 74% 74% |S||A| [25]
tor, T-stationary,
e-optimal policy
Randomized VI ~ discount factor, (E!;ﬁ'é (Euﬁﬂég |S|| A [23]
e-optimal policy
Primal-Dual 7 Learning | 7-stationary, (T't’ﬁ”i);'SHA' (T't:””e);'s”A' |S||A| This Paper
ty,ip-mixing,
e-optimal policy

Table 1: Complexity Results for Sampling-Based Methods for MDP. The sample complexity is
measured by the number of queries to the SO. The run-time complexity is measured by the total
run-time complexity under the assumption that each query takes (’j(l) time. The space complexity
is the additional space needed by the algorithm in addition to the input.

Mengdi Wang, Primal-Dual 1 Learning, arXiv:1710.0610




Q-Learning

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

i
>0

Q* satisfies the following Bellman equation:
Q" (5,0) =B [r + ymax Q*(s',a")}s a]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a’)

The optimal policy m* corresponds to taking the best action in any state as specified by Q*



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qit1(s,0) = E |r + ymax Qi(s',a)|s, a

Q, will converge to Q* as i -> infinity




Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qi+1(5,0) = E [r +ymax Qu(s', a')|s,

Q, will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!




Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) =~ Q*(s,a)

If the function approximator is a deep neural network => deep g-learning!




Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(5,0) = Egne |1 +7maxQ*(s',a)]s,a]

Forward Pass
Loss function: L;(6;) = Eg anp(y [(¥i — Q(s, a5 6;))7]

where y; = Eg g ["”'I'Wma;XQ(S'aa’;@i—l”S, a]
a

Backward Pass
Gradient update (with respect to Q-function parameters 06):

VOZL’L(H'I,) — Es,arvp(-);s'rvg [T T n}za,x Q(S,a a"; 92-_1) - Q(Sa a, 02))V91Q(S, a, 02):|




[Mnih et al. NIPS Workshop 2013; Nature 2015]

Case Study: Playing Atari Games

L O ¢ N — T ——

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step




[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(Sa a, 9) : FC-4 (Q-values)
neural network
with weights @ FC-256

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)




[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(s,a;0):

FC-4 (Q-values) <« last FC. layer has 4-d
neural network output (if 4 actions),
with weights @ FC-256 corresponding to Q(s,,

a,), Q(s, a,), Q(s, a,),
Q(s,,a,)
A single feedforward pass voa
to compute Q-values for all
actions fron_w .the current o Number of actions between 4-18
state => efficient! 10— depending on Atari game

|

Current state s: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)




Training the Q-network: Loss function (from before)

Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Eg g [r +ymax Q*(s’,a’)|s, a]
CLI

Forward Pass
Loss function: L;(0;) = Eg anp(y [(vi = Q(s, a;6;))?]

lteratively try to make the Q-value
/ /
where y; = Eg g [7' + Y max Q(s",a’;0;-1)|s, 0«] close to the target value (y,) it
@ should have, if Q-function
corresponds to optimal Q* (and

Backward Pass optimal policy m*)
Gradient update (with respect to Q-function parameters 06):

VBZLz(Oz) — ]Es,arvp(-);s’rvé’ [r + II}ZE}X Q(3,7 a',; 0?3—1) - Q(Sa a, 92))V91 Q(S, a, 9@)]



Training the Q-network: Experience Replay

» | earning from batches of consecutive samples is problematic:
» Samples are correlated => inefficient learning

» Current Q-network parameters determines next training samples (e.q. if
maximizing action is to move left, fraining samples will be dominated by samples
from left-hand size) => can lead to bad feedback loops

» Address these problems using experience replay

= Continually update areplay memory table of transitions (s;, oy, 1y, Si+;) s game
(experience) episodes are played

®» Train Q-network on random minibatches of transitions from the replay memory,
instead of consecutive samples

Each transition can also contribute
to multiple weight updates
=> greater data efficiency




[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function ) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s1)
fort =1,7T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s¢),a;0)
Execute action a; in emulator and observe reward r; and image ;. ;
Set 8441 = 84, a4, Ty and preprocess ¢y1 = G(S¢41)
Store transition (¢y,as, 74, ¢¢+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
Setgi=d for terminal ¢,
J r; +ymaxy Q(¢j+1,a’;0) for non-terminal ¢, 1,

Perform a gradient descent step on (y; — Q(@;, a;; 19))2 according to equation 3
end for
end for




Example

» hitps://www.youtube.com/watchev=V1eYniJORNk




Policy Gradients

» Whatis a problem with Q-learninge
The Q-function can be very complicated!

» Example: arobot grasping an object has a very high-dimensional state =>
hard to learn exact value of every (state, action) pair

» But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection
of policies?




Policy Gradients

Formally, let’s define a class of parametrized policies: II = {7r9, 0 € ]Rm}

For each policy, define its value:

J(O)=E Z vYire|me

We want to find the optimal policy 6* = arg max J(0)

How can we do this?
Gradient ascent on policy parameters!



REINFORCE algorithm

Mathematically, we can write:
J(0) = Ernp(r;0) [r(7)]

= /r('r)p(T; 0)dr

T

Where r(7) is the reward of a trajectory 7 = (sq, ag, Tg, S1, - - -)




Expected reward: J(0) = Ernp(rio) [7(7)]

= [rr(T)p(T; 0)dr

Now let’s differentiate this: V4.J () =/T(T)V9p(7;9)d7 Intractable! Gradient of an

expectation is problematic when p
T depends on 6

However, we can use a nice trick: Vop(T;0) = p(;6) Vop(T;0)
If we inject this back: p(7;0)

VoJ(0) = / (r(m)Veglog p(7;8)) p(7; 0)dr

T

= p(1;0)Vglogp(7;0)

Can estimate with
— ]ETNp(T;g) [T(T)Vg logp(’r; 9)] Monte Carlo sampling




VoJ(6) = / (r(r) Vo log p(r;0)) p(r; 0)dr

REINFORCE algorithm _E, 0 [r(r) Vo log p(7 0)]

Can we compute those quantities without knowing the transition probabilities?

We have: p(r;60) = [ | p(si1lse, ar)mo(axls:)

£>0
Thus: logp(T;0) = Zlogp(st+1|st, at) + log me(az|st)

t>0 Doesn’t depend on

And when differentiating: Ve logp(r;6) =Y Vologmo(atls:)  ransition probabilities!
t>0

Therefore when sampling a trajectory 7, we can estimate J(0) with

VoJ(6) = ) r(1)Vglogmo(as|st)

t>0



Intuition

Gradient estimator: ~ VJ(6) ~ Z r(7)Ve log me(at|st)
£>0

Interpretation:
- If r(z) is high, push up the probabilities of the actions seen
- If r(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?




Variance reduction

Gradient estimator:  VJ(0) =~ Z r(7)Ve log me(at|st)
t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

VeJ(0) = Z (Z rtr) Vo log me(az|st)

t>0 \t/'>t

Second idea: Use discount factor y to ignore delayed effects

VoJ (0 Z (Z Nty ) Vo log mg(as|st)

t>0 \t'>t




Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

VoJ (6 Z (Z 'yt ey — b(sy) ) Vo logmg(az|st)

t>0 \t'>t



How to choose the baseline?

t>0 \t/>t

VGJ(H) ~ y: (y: 'yt’_tv“tf — b(St)) V@ log 7r9(at|st)

A simple baseline: constant moving average of rewards experienced so far
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla
REINFORCE”




How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from

that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s if Q™ (s¢,at) — V" (s¢)
is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: VyJ(6) = Z(Q“"(st, at) — V7™ (s))Vglogmg(a|st)

t>0




Actor-Critic Algorithm

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust
- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy
- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an
action was better than expected A™(s,a) = Q" (s,0) — V™ (s)




Actor-Critic Algorithm

Initialize policy parameters 6, critic parameters ¢
For iteration=1,2 ... do
Sample m trajectories under the current policy

Af — 0
Fori=1, ..., mdo
Fort=1, ..., T do

Z’Yt Ty = Ve(st)
/>t
AG — AG + A, Vylog(al|s?)

A¢<—ZZV ||A3||?
0 and
¢ + BAP

End for



REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

image, to predict class
- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

Take a sequence of “glimpses” selectively focusing on regions of the
3"

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

[Mnih et al. 2014]




REINFORCE in action: Recurrent Attention Model (RAM)

(X5, Ys3) (X4 Yy) (Xs, Ys)

(X;5 ;) (X5 Y,)

Input y=2

o L

b

image ‘

.J

[Mnih et al. 2014]
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Pytorch Implementation

» Nhitps://github.com/kevinzakka/recurrent-visual-attention

» A Pytorch implementation for the paper, Recurrent Models of Visual
Attention by Volodymyr Mnih, Nicolas Heess, Alex Graves and Koray

Kavukcuoglu, NIPS 2014.
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More policy gradients: AlphaGo

Overview:

Mix of supervised learning and reinforcement learning
Mix of old methods (Monte Carlo Tree Search) and
recent ones (deep RL)

How to beat the Go world champion:

Featurize the board (stone color, move legality, bias, ...)
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Initialize policy network with supervised training from professional go games,
then continue training using policy gradient (play against itself from random

previous iterations, +1 / -1 reward for winning / losing)
Also learn value network (critic)

Finally, combine combine policy and value networks in a Monte Carlo Tree [Silver et al.,

Search algorithm to select actions by lookahead search

Nature 2016]



Summary

» Policy gradients: very general but suffer from high variance so requires a lot
of samples. Challenge: sample-efficiency

®» Q-learning: does not always work but when it works, usually more sample-
efficient. Challenge: exploration

» Guarantees:

» Policy Gradients: Converges to a local minima, often good enough!

= Q-learning: Zero guarantees since you are approximating Bellman equation with
a complicated function approximator




Thank you!




