
An Introduction to Reinforcement
Learning

Yuan YAO
HKUST
Based on Feifei Li, Mengdi Wang, et al.

1

Supervised Learning

´ Data: (x, y)
x is input, y is output/response (label)

´ Goal: Learn a function to map x -> y

´ Examples:
´ Classification,

´ regression,

´ object detection,

´ semantic segmentation,

´ image captioning, etc. Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

So far… Supervised Learning

5

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Cat

Classification

This image is CC0 public domain

Cat

Unsupervised Learning

´ Data: x
Just input data, no output labels!

´ Goal: Learn some underlying hidden structure of the data

´ Examples:
´ Clustering,

´ dimensionality reduction (manifold learning),

´ feature learning,

´ density estimation,

´ Generating samples, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Generative Models

16

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Today: Reinforcement Learning

´ Problems involving an agent
´ interacting with an environment,
´ which provides numeric reward

signals

´ Goal:
´ Learn how to take actions in

order to maximize reward

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Today: Reinforcement Learning

7

Problems involving an agent
interacting with an environment,
which provides numeric reward
signals

Goal: Learn how to take actions
in order to maximize reward

Playing games against human champions

The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning
What’s Driving the Tsunami?
Intellectual Significance
Human Impact

Reaching Human Level Performance

1997 2004

2017
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?

The Deep Learning Tsunami
Why now?

Where are the Intellectuals?
Relevant Theoretical Approaches

Course Structure

The Sudden Emergence of Deep Learning
What’s Driving the Tsunami?
Intellectual Significance
Human Impact

Reaching Human Level Performance

1997 2004

2017
D Donoho/ H Monajemi/ V Papyan Stats 385 Stanford Lecture 01: Deep Learning Challenge: Is There Theory?AlphaGo “LEE” 2016

AlphaGo ”ZERO” D Silver et al. Nature 550, 354–359 (2017) doi:10.1038/nature24270

Deep Blue in 1997

Outline

´ What is Reinforcement Learning?

´ Markov Decision Processes

´ Bellman Equation as Linear Programming

´ Q-Learning

´ Policy Gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 20179

Agent

Environment

Reinforcement Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 201710

Agent

Environment

State st

Reinforcement Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 201711

Agent

Environment

Action at
State st

Reinforcement Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 201712

Agent

Environment

Action at
State st Reward rt

Reinforcement Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 201713

Agent

Environment

Action at
State st Reward rt

Next state st+1

Reinforcement Learning

Car-Pole Control Problem

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Cart-Pole Problem

14

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

This image is CC0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Go

17

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Mathematical Formulation of
Reinforcement Learning
´ Markov property: Current state completely characterizes the state of the

world

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Markov Decision Process

19

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by:

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

´ At time step t=0, environment samples initial state s0 ~ p(s0)

´ Then, for t=0 until done:
´ Agent selects action at

´ Environment samples reward rt ~ R(. | st, at)

´ Environment samples next state st+1 ~ P(. | st; at)

´ Agent receives reward rt and next state st+1

´ A policy pi is a function from S to A that specifies what action to take in
each state

´ Objective: find policy that maximizes the cumulated discounted reward

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

A simple MDP: Grid World

21

Objective: reach one of terminal states (greyed out) in
least number of actions

★

★

actions = {

1. right

2. left

3. up

4. down

}

Set a negative “reward”
for each transition

(e.g. r = -1)

states

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

A simple MDP: Grid World

22

Random Policy Optimal Policy

★

★

★

★

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

The optimal policy Ḗ*

24

We want to find optimal policy Ḗ* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?
Maximize the expected sum of rewards!

Formally: with

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Definitions: Value function and Q-value function

27

Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy
from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from
taking action a in state s and then following the policy:

Bellman Equation of Optimal Value

Remarks
• In the continuous-time analog of MDP, i.e., stochastic optimal control, the Bellman equation
is the HJB
• Exact solution methods: value iteration, policy iteration, variational analysis
• What makes things hard:

Curse of dimensionality + Modeling Uncertainty

Project 2 8

Assume that ⌃
x|z and ⌃

z|x are both diagonal, i.e. conditional independence.

y = f(x1, . . . , x
d

)

Reinforcement Learning:

Optimal Value Function V

⇤ : S ! R = x

⇤ satisfied the following nonlinear fixed point equation

x

⇤(i) = max
a2A

8
<

:r

a

(i) + �

X

j2S
P

a

(i, j)x⇤(j)

9
=

;

where a policy ⇡

⇤ is an optimal policy if and only if it attains the optimality of the Bellman
equation.

The Bellman equation is equivalent to

max e

T

x

subject to (I � �P

a

)x� r

a

� 0, a 2 A

Dual Problem

Online Value-Policy Iteration

Duality between Value Function and Policy

Let �
i,a

� 0 be the multiplier associated with the i-th row of the primal constraint �P
a

x+r

a

 x.
The dual problem is

minimize ��

T

a

r

a

, a 2 A
subject to

X

a2A
(I � �P

T

a

)�
a

= e, �

a

� 0, a 2 A

where the dual variable is high-dimensional � = (�
a

)
a2A 2 R|A||S|.

Bellman Equation as LP (Farias and Van Roy, 2003)

Online Value-Policy Iteration

Bellman Equation as LP

Bellman Equation as LP (Farias and Van Roy, 2003)

The Bellman equation is equivalent to

minimize � eT x

subject to (I � ↵P
a

) x � g
a

 0, a 2 A,

• Exact policy iteration is a form of simplex method and exhibits strongly
polynomial performance (Ye 2011)

• Again, curse of dimensionality:

• Variable dimension = |S|.
• Number of constraints = |S|⇥ |A|.

18 / 25

Project 2 8

Assume that ⌃
x|z and ⌃

z|x are both diagonal, i.e. conditional independence.

y = f(x1, . . . , x
d

)

Reinforcement Learning:

Optimal Value Function V

⇤ : S ! R = x

⇤ satisfied the following nonlinear fixed point equation

x

⇤(i) = max
a2A

8
<

:r

a

(i) + �

X

j2S
P

a

(i, j)x⇤(j)

9
=

;

where a policy ⇡

⇤ is an optimal policy if and only if it attains the optimality of the Bellman
equation.

The Bellman equation is equivalent to

minimize e

T

x

subject to (I � �P

a

)x� r

a

� 0, a 2 A,

X

i2S
e(i) = 1, e > 0.

Dual Problem

Online Value-Policy Iteration

Duality between Value Function and Policy

Let �
i,a

� 0 be the multiplier associated with the i-th row of the primal constraint �P
a

x+r

a

 x.
The dual problem is

maximize �

T

a

r

a

, a 2 A
subject to

X

a2A
(I � �P

T

a

)�
a

= e, �

a

� 0, a 2 A

where the dual variable is high-dimensional � = (�
a

)
a2A 2 R|A||S|.

Duality between Value Function and Policy

Online Value-Policy Iteration

Duality between Value Function and Policy

Dual Problem
Let �

i,a > 0 be the multiplier associated with the ith row of the primal constraint
↵P

a

x + g
a

� x . The dual problem is

maximize �
X

a2A

�T

a

g
a

subject to
X

a2A

⇣

I � ↵PT

a

⌘

�
a

= e, �
a

� 0,

where the dual variable is high-dimensional � = (�
a

)
a2A 2 <|S||A|.

Theorem
The optimal dual solution �⇤ = (�⇤

i,a)i2S,a2A is sparse and has exact |S | nonzeros. It
satisfies

�

�⇤
i,µ⇤(i)

�

i2S = (I � ↵PT

µ⇤)�1e,

and �⇤
i,a = 0 if a 6= µ⇤(i).

Finding the optimal policy µ⇤ = Finding the basis of the dual solution �⇤

19 / 25

Project 2 8

Assume that ⌃
x|z and ⌃

z|x are both diagonal, i.e. conditional independence.

y = f(x1, . . . , x
d

)

Reinforcement Learning:

Optimal Value Function V

⇤ : S ! R = x

⇤ satisfied the following nonlinear fixed point equation

x

⇤(i) = max
a2A

8
<

:r

a

(i) + �

X

j2S
P

a

(i, j)x⇤(j)

9
=

;

where a policy ⇡

⇤ is an optimal policy if and only if it attains the optimality of the Bellman
equation.

The Bellman equation is equivalent to

minimize e

T

x

subject to (I � �P

a

)x� r

a

� 0, a 2 A,

X

i2S
e(i) = 1, e > 0.

Dual Problem

Online Value-Policy Iteration

Duality between Value Function and Policy

Let �
i,a

� 0 be the multiplier associated with the i-th row of the primal constraint �P
a

x+r

a

 x.
The dual problem is

maximize �

T

a

r

a

, a 2 A
subject to

X

a2A
(I � �P

T

a

)�
a

= e, �

a

� 0, a 2 A

where the dual variable is high-dimensional � = (�
a

)
a2A 2 R|A||S|.

Online Value-Policy Iteration
(Mengdi Wang 2017, arXiv:1704.01869)

Online Value-Policy Iteration

Online Value-Policy Iteration

Stochastic primal-dual (value-policy) algorithm

• Input: Simulation Oracle M, n = |S|, m = |A|, ↵ 2 (0, 1).

• Initialize x

(0) and � = (�
(0)
u

: u 2 A) arbitrarily.

• Fork = 1, 2, . . . ,T

• Sample i

k

uniformly from S and sample u

k

uniformly from A.
• Sample next state j

k

and immediate reward g

i

k

j

k

u

k

conditioned on (i
k

, u
k

) from M.
• Update the iterates by

x

(k� 1
2
) = x

(k�1) � �
k

⇣
� e +m�

(k�1)
u

k

� ↵mn

⇣
�
(k�1)
u

k

· e
i

k

⌘
e

j

k

⌘
,

�
(k� 1

2
)

u

k

= �
(k�1)
u

k

+m�
k

⇣
x

(k�1) � ↵n
⇣
x

(k�1) · e
j

k

⌘
e

i

k

� ng

i

k

j

k

u

k

e

i

k

⌘
,

�
(k� 1

2
)

u

= �
(k�1)
u

, 8 u 6= u

k

,

• Project the iterates orthogonally to some regularization constraints

x

(k) = ⇧
X

x

(k� 1
2
), �(k) = ⇧⇤�

(k� 1
2
).

• Ouput: Averaged dual iterate �̂ = 1
T

P
T

k=1 �
(k)

20 / 25

Near Optimal Primal-Dual Algorithms

Method Setting Sample Complexity Run-Time Complexity Space Complexity Reference

Phased Q-Learning γ discount factor,
ϵ-optimal value

|S||A|
(1−γ)3ϵ2

ln 1
δ

|S||A|
(1−γ)3ϵ2

ln 1
δ

|S||A| [17]

Model-Based Q-Learning γ discount factor,
ϵ-optimal value

|S||A|
(1−γ)3ϵ2

ln |S||A|
δ

NA |S|2|A| [1]

Randomized P-D γ discount factor,
ϵ-optimal policy

|S|3|A|
(1−γ)6ϵ2

|S|3|A|
(1−γ)6ϵ2

|S||A| [25]

Randomized P-D γ discount fac-
tor, τ -stationary,
ϵ-optimal policy

τ 4 |S||A|
(1−γ)4ϵ2

τ 4 |S||A|
(1−γ)4ϵ2

|S||A| [25]

Randomized VI γ discount factor,
ϵ-optimal policy

|S||A|·
(1−γ)4ϵ2

|S||A|·
(1−γ)4ϵ2

|S||A| [23]

Primal-Dual π Learning τ -stationary,
t∗mix-mixing,
ϵ-optimal policy

(τ ·t∗
mix

)2|S||A|

ϵ2
(τ ·t∗

mix
)2|S||A|

ϵ2
|S||A| This Paper

Table 1: Complexity Results for Sampling-Based Methods for MDP. The sample complexity is
measured by the number of queries to the SO. The run-time complexity is measured by the total
run-time complexity under the assumption that each query takes Õ(1) time. The space complexity
is the additional space needed by the algorithm in addition to the input.

applies to the more general undiscounted problems. Without assuming any discount factor, we
are able to characterize the complexity upperbound for infinite-horizon MDP using its mixing and
stationary properties. Comparing to [25], the complexity results achieved in the current paper are
much sharper, mainly due to the natural simplicity of average-reward Markov processes. To the
author’s best knowledge, our results provide the first sublinear run time for solving infinite-horizon
average-reward MDP without any assumption on discount factor or finite horizon.

3 Ergodic MDP, Bellman Equation, and Duality

Consider an AMDP that is described by a tuple M = (S,A,P, r). In this paper, we focus on
AMDP that is ergodic (aperiodic and recurrent) under any stationary policy. For a stationary
policy π, we denote by νπ the stationary distribution of the Markov decision process which satisfies
(P π)⊤ νπ = νπ. We make the following assumptions on the stationary distributions and mixing
times:

Assumption 1 (Ergodic Decision Process). The Markov decision process specified by M = (S,A,P, r)
is τ -stationary in the sense that it is ergodic under any stationary policy π and there exists τ > 1
such that

1√
τ |S|

1 ≤ νπ ≤
√
τ

|S| 1.

Assumption 1 characterizes a form of complexity of MDP in terms of the range of its stationary
distributions. The factor τ characterizes a notion of complexity of ergodic MDP, i.e., the variation
of stationary distributions associated with different policies. Suppose that some policies induce
transient states (so the stationary distribution is not bounded away from zero). In this case, we as
long as there is some policy that leads to an ergodic process, we can restrict our attention to mixture
policies in order to guarantee ergodicity. In this way, we can always guarantee that Assumption 1
holds on the restricted problem at a cost of some additional approximation error.

5

Mengdi Wang, Primal-Dual π Learning, arXiv:1710.0610

Q-Learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Bellman equation

30

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

The optimal policy Ḗ* corresponds to taking the best action in any state as specified by Q*

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Solving for the optimal policy

31

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Solving for the optimal policy

34

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Solving for the optimal policy: Q-learning

36

Q-learning: Use a function approximator to estimate the action-value function

If the function approximator is a deep neural network => deep q-learning!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Remember: want to find a Q-function that satisfies the Bellman Equation:

40

Loss function:

where

Solving for the optimal policy: Q-learning

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Case Study: Playing Atari Games

42

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

 :
neural network
with weights

Q-network Architecture

43

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

 :
neural network
with weights

Q-network Architecture

48

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d
output (if 4 actions),
corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

Number of actions between 4-18
depending on Atari game

A single feedforward pass
to compute Q-values for all
actions from the current
state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Remember: want to find a Q-function that satisfies the Bellman Equation:

49

Loss function:

where
Iteratively try to make the Q-value
close to the target value (yi) it
should have, if Q-function
corresponds to optimal Q* (and
optimal policy Ḗ*)

Training the Q-network: Loss function (from before)

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

´ Learning from batches of consecutive samples is problematic:
´ Samples are correlated => inefficient learning

´ Current Q-network parameters determines next training samples (e.g. if
maximizing action is to move left, training samples will be dominated by samples
from left-hand size) => can lead to bad feedback loops

´ Address these problems using experience replay
´ Continually update a replay memory table of transitions (st, at, rt, st+1) as game

(experience) episodes are played

´ Train Q-network on random minibatches of transitions from the replay memory,
instead of consecutive samples

Each transition can also contribute
to multiple weight updates
=> greater data efficiency

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 201753

Putting it together: Deep Q-Learning with Experience Replay

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Example

´ https://www.youtube.com/watch?v=V1eYniJ0Rnk

Policy Gradients

´ What is a problem with Q-learning?
The Q-function can be very complicated!

´ Example: a robot grasping an object has a very high-dimensional state =>
hard to learn exact value of every (state, action) pair

´ But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection
of policies?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy Gradients

67

Gradient ascent on policy parameters!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

REINFORCE algorithm

68

Mathematically, we can write:

Where r(ᶦ) is the reward of a trajectory

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

REINFORCE algorithm

73

Intractable! Gradient of an
expectation is problematic when p
depends on θ

Can estimate with
Monte Carlo sampling

Now let’s differentiate this:

However, we can use a nice trick:
If we inject this back:

Expected reward:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

REINFORCE algorithm

77

Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

And when differentiating:

Therefore when sampling a trajectory ᶦ, we can estimate J(ᶚ) with

Doesn’t depend on
transition probabilities!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Intuition

80

Gradient estimator:

Interpretation:
- If r(ᶦ) is high, push up the probabilities of the actions seen
- If r(ᶦ) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Variance reduction

83

Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

Second idea: Use discount factor ᶕ to ignore delayed effects

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

84

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

How to choose the baseline?

86

A simple baseline: constant moving average of rewards experienced so far
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla
REINFORCE”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

How to choose the baseline?

90

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!
Intuitively, we are happy with an action at in a state st if
is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Actor-Critic Algorithm

91

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an

action was better than expected

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Actor-Critic Algorithm

92

Initialize policy parameters ᶚ, critic parameters ᶰ
For iteration=1, 2 … do

Sample m trajectories under the current policy

For i=1, …, m do
For t=1, ... , T do

End for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

REINFORCE in action: Recurrent Attention Model (RAM)

94

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the
image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

glimpse

[Mnih et al. 2014]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 201799

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

NN

(x5, y5)

Softmax

Input
image

y=2

REINFORCE in action: Recurrent Attention Model (RAM)

[Mnih et al. 2014]

Pytorch Implementation

´ https://github.com/kevinzakka/recurrent-visual-attention

´ A Pytorch implementation for the paper, Recurrent Models of Visual
Attention by Volodymyr Mnih, Nicolas Heess, Alex Graves and Koray
Kavukcuoglu, NIPS 2014.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

More policy gradients: AlphaGo

10
1

How to beat the Go world champion:
- Featurize the board (stone color, move legality, bias, …)
- Initialize policy network with supervised training from professional go games,

then continue training using policy gradient (play against itself from random
previous iterations, +1 / -1 reward for winning / losing)

- Also learn value network (critic)
- Finally, combine combine policy and value networks in a Monte Carlo Tree

Search algorithm to select actions by lookahead search

This image is CC0
public domain

Overview:
- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and

recent ones (deep RL)

This image is CC0 public domain

[Silver et al.,
Nature 2016]

Summary

´ Policy gradients: very general but suffer from high variance so requires a lot
of samples. Challenge: sample-efficiency

´ Q-learning: does not always work but when it works, usually more sample-
efficient. Challenge: exploration

´ Guarantees:
´ Policy Gradients: Converges to a local minima, often good enough!

´ Q-learning: Zero guarantees since you are approximating Bellman equation with
a complicated function approximator

Thank you!

