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A gentle introduction to

Linearization theory of neural networks



Linearized neural networks (neural tangent model)

I Multi-layers neural network f(x;θ), x 2 Rd, θ 2 RN

f(x;θ) =WL�(� � �W 2�(W 1x)):

I Linearization around (random) parameter θ0

f(x;θ) = f(x;θ0) + hθ � θ0;rθf(x;θ0)i+ o(kθ � θ0k2):

I Neural tangent model: the linear part of f

fNT(x;β;θ0) = hβ;rθf(x;θ0)i:

[Jacot, Gabriel, Hongler, 2018] [Chizat, Bach, 2018b]
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Linear regression over random features

I NT model: the linear part of f

fNT(x;β;θ0) = hβ; �(x)i = hβ;rθf(x;θ0)i:

I (Random) feature map: �(�) = rθf(�;θ0) : Rd ! RN .

I Training dataset: (X ;Y) = (xi; yi)i2[n].

I Gradient flow dynamics:

d

dt
βt = �rβÊ[(y � fNT(x;βt;θ0))2]; β0 = 0:

I Linear convergence: �t ! β̂ = �(X )yY.
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Neural network � Neural tangent

Theorem [Jacot, Gabriel, Hongler, 2018] (Informal)
Consider neural networks fN (x;θ) with number of neurons N , and consider

d

dt
θt = �rθÊ[(y � fN (x;θt))2]; θ0 = θ0;

d

dt
βt = �rβÊ[(y � fNNT(x;βt;θ0))2]; β0 = 0:

Under proper (random) initialization, we have a.s.

lim
N!1

jfN (x;θt)� fNNT(x;βt)j = 0:



Optimization success

Gradient flow of training loss of NN converges to global min ...
... with over-parameterization and proper initialization

[Jacot, Gabriel, Hongler, 2018], [Du, Zhai, Poczos, Singh, 2018], [Du, Lee, Li, Wang,
Zhai, 2018], [Allen-Zhu, Li, Song 2018], [Zou, Cao, Zhou, Gu, 2018], [Oymak,
Soltanolkotabi, 2018] [Chizat, Bach, 2018b], ....

Does linearization fully explain the success of neural networks?

Our answer is No
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Generalization

Empirically, the generalization of NT models are not as good as NN

Table: Cifar10 experiments

Architecture Classification error
CNN 4%-

(1) CNTK 23%
(2) CNTK 11%

(3) Compositioal Kernel 10%

(1) [Arora, Du, Hu, Li, Salakhutdinov, Wang, 2019],
(2) [Li, Wang, Yu, Du, Hu, Salakhutdinov, Arora, 2019],
(3) [Shankar, Fang, Guo, Fridovich-Keil, Schmidt, Ragan-Kelley, Recht, 2020].



Performance gap: NN versus NT



Two-layers neural network

fN (x;Θ) =

NX
i=1

ai�(hwi;xi); Θ = (a1;w1; : : : ; aN ;wN ):

I Input vector x 2 Rd.

I Bottom layer weights wi 2 Rd, i = 1; 2; : : : ; N .

I Top layer weights ai 2 R, i = 1; 2; : : : ; N .



Linearization around initialization

Linearization

fN (x;Θ) = fN (x;Θ
0) +

NX
i=1

�ai�(hw
0

i ;xi)

| {z }
Top layer linearization

+

NX
i=1

a
0

i�
0(hw0

i ;xi)h�wi;xi

| {z }
Bottom layer linearization

+o(�):

Linearized neural network: (wi � Unif(Sd�1))

FRF;N (W ) =
n
f =

NX
i=1

ai�(hwi;xi) : ai 2 R; i 2 [N ]
o
;

FNT;N (W ) =
n
f =

NX
i=1

�0(hwi;xi)hbi;xi : bi 2 Rd; i 2 [N ]
o
:

Blue: random and fixed. Red: parameters to be optimized.
[Rahimi, Recht, 2008] [Jacot, Gabriel, Hongler, 2018]



Approximation error

Data distribution:

x � Unif(Sd�1(
p
d)); f? 2 L2(Sd�1(

p
d)):

Minimum risk (approximation error):

RM;N (f?) = inf
f2FM;N (W )

Ex
h�
f?(x)� f(x)

�2i
; M 2 fRF;NTg:



Staircase decay



Random features regression

FRF;N (W ) =
n
f =

NX
i=1

ai�(hwi;xi) : ai 2 R; i 2 [N ]
o
;

W = (wi)i2[N ] �i:i:d: Unif(Sd�1):

Theorem (Ghorbani, Mei, Misiakiewicz, Montanari, 2019)
Assume d`+� � N � d`+1�� and � satisfies “generic condition”, we have

inf
f2FRF;N (W )

Ex[(f?(x)� f(x))2] = kP>`f?k2L2 + od;P(kf?k2L2):

P>`: projection orthogonal to the space of degree-` polynomials.

With d` parameters, RF only fit a degree-` polynomial.



Random features regression

FRF;N (W ) =
n
f =

NX
i=1

ai�(hwi;xi) : ai 2 R; i 2 [N ]
o
;

W = (wi)i2[N ] �i:i:d: Unif(Sd�1):

Theorem (Ghorbani, Mei, Misiakiewicz, Montanari, 2019)
Assume d`+� � N � d`+1�� and � satisfies “generic condition”, we have

inf
f2FRF;N (W )

Ex[(f?(x)� f(x))2] = kP>`f?k2L2 + od;P(kf?k2L2):

P>`: projection orthogonal to the space of degree-` polynomials.

With d` parameters, RF only fit a degree-` polynomial.



Similar result for NT
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The staircase decay (a cartoon)

f = P0f + P1f + P2f + P3f + � � �
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Approximation gap

Function f : Sd�1 ! R, f(x) = Qk(x1).
Qk: degree k polynomial.

I NT: N = �d(d
k�1);

I NN: N = �d(1).

I A separation of approximation power.

I Neural network can potentially learn features adaptively.



Related work
Approximation error of two-layers NN and RF:
[Barron, 1993], [Mhaskar, 1996], [Maiorov, 1999], [Caponnetto, de Vito, 2007],
[Rahimi, Recht, 2009], [Bach, 2017], [E, Ma, Wu, 2018] ...

Approx bound f? bounded norm f? 2 L2(Rd) \ (d?-sparse)
RF kf?k2H=N �N (1=N

1=d)

NN kf?k2B=N �N (1=N
1=d?)

Difference between:

New results v.s. Classical results

N = dk as d!1; v.s. fixed d as N !1;
Constant asymptotic error, v.s. Vanishing upper bound.

Which asymptotics makes more sense?

; N = 10; 000; 000:

; :
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d? = 10; N = 10; 000; 000:

N = d?
7; 1=N1=d? = 0:20:



Double descent



The motivating experiment

I MNIST: (xi; yi) 2 R784 � [10], i 2 [50; 000].

I Two-layers neural networks fN :

fN (x;θ) =

NX
j=1

aj�(hwj ;xi):

I Square loss without regularization.

I Find a local minimizer, report training and test error.

I Perform a sequence of experiments for different N .

I Plot training and test error vs N .
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Increasing # parameters
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Figure: Experiments on MNIST. [Belkin, Hsu, Ma, Mandal, 2018].
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Figure: Experiments on MNIST. Left: [Belkin, Hsu, Ma, Mandal, 2018]. Right:
[Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart, 2018].

Similar phenomenon appeared in the literature [LeCun, Kanter, and Solla, 1991],
[Krogh and Hertz, 1992], [Opper and Kinzel, 1995], [Neyshabur, Tomioka, Srebro,
2014], [Advani and Saxe, 2017].



U-shaped curve

[Belkin, Hsu, Ma, Mandal, 2018]



Double descent

Figure: A cartoon by [Belkin, Hsu, Ma, Mandal, 2018].

X Peak at the interpolation threshold.
X Monotone decreasing in the overparameterized regime.
X Global minimum when the number of parameters is infinity.



Complementary instead of contradictory

U-shaped curve
Test error vs model complexity that tightly controls generalization.

Examples: `2 norm in linear model, “k” in k nearest-neighbors.

Double-descent
Test error vs number of parameters.

Examples: # parameters in NN.

In NN, # parameters 6= model complexity that tightly controls generalization.

[Bartlett, 1997], [Bartlett and Mendelson, 2002]
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Linear model with random covariates

# parameters / # samples

By [Hastie, Montanari, Rosset, Tibshirani, 2019]. See also [Belkin, Hsu, Xu, 2019].

I Under-parameterized: β̂ = argminβ
P
i(yi � hxi;βi)2.

I Over-parameterized: β̂ = argminβ kβk2; s:t: yi = hxi;βi+ "i; i 2 [n].



Why singularity?

I Model: xi � N (0; Id), yi = h0;xii+ "i � N (0; 1), i 2 [n].

I Test risk / E[kβ̂�0k22] / E[kXyyk22] / E[tr((XTX)y)], where X 2 Rn�d.

I When n 6= d, X is well conditioned.

I When n � d, X is infinitely ill conditioned.

I The model has marginally enough parameters to interpolate all the data,
hence it interpolates in an awkward way.

I To fit the noise, the coefficients kβ̂k22 = kXyyk22 blows up.

[Bartlett, Long, Lugosi, Tsigler, 2019], [Muthukumar, Vodrahalli, Sahai, 2019]
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Comparison

Neural networks [Spigler, et.al., 2018] Linear model [Hastie, et.al., 2019]

N/n# parameters / # samples # parameters / # samples

X Peak at the interpolation threshold.
? Monotone decreasing in the overparameterized regime.
? Global minimum when the number of parameters is infinity.



Goal: find a tractable model that exhibits all the features
of the double descent curve.

Figure: By [Belkin, Hsu, Ma, Mandal, 2018].



A simple model

The random features model

fRF(x;a) =

NX
j=1

aj�(hwj ;xi):

Random weights (wj)j2[N ]

wj �iid Unif(Sd�1):

Data (xi; yi)i2[n]

xi � Unif(Sd�1(
p
d)); yi = f?(xi) + "i:
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A simple model

Random features regression: â� = argmina L�(a),

L�(a) =
1

n

nX
i=1

h�
yi �

NX
j=1

aj�(hxi;wji)
�2i

+
�N

d
kak22; (Train)

R(a; f?) = Ex;y
h�
f?(x)�

NX
j=1

aj�(hx;wji)
�2i

: (Test)

Assumptions
� n data, N features, d dimension. N=d!  1, n=d!  2, as d!1.

� Tech. ass. on f? and � (apply to almost every f? and �).



Precise asymptotics

Theorem (Mei and Montanari, 2019)
Under above assumptions, the test error of RF model is given by

R(â�; f?) = kβk22 �B(�;  1;  2; �=�
2
?) + � 2 � V (�;  1;  2; �=�

2
?) + od;P(1);

where functions B and V are given explicitly below.



Explicit formulae
Let the functions �1; �2 : C+ ! C+ be the unique solution of

�1 =  1
�
� � � �2 �

�2�2

1� �2�1�2

�
�1

;

�2 =  2
�
� � � �1 �

�2�1

1� �2�1�2

�
�1

;

Let
� � �1(i( 1 2�)

1=2) � �2(i( 1 2�)
1=2);

and

E0(�;  1;  2; �) � � �5�6 + 3�4�4 + ( 1 2 �  2 �  1 + 1)�3�6 � 2�3�4 � 3�3�2

+ ( 1 +  2 � 3 1 2 + 1)�2�4 + 2�2�2 + �2 + 3 1 2��
2
�  1 2 ;

E1(�;  1;  2; �) �  2�
3�4 �  2�

2�2 +  1 2��
2
�  1 2 ;

E2(�;  1;  2; �) � �5�6 � 3�4�4 + ( 1 � 1)�3�6 + 2�3�4 + 3�3�2 + (� 1 � 1)�2�4 � 2�2�2 � �2 :

We then have

B(�;  1;  2; �) �
E1(�;  1;  2; �)

E0(�;  1;  2; �)
; V (�;  1;  2; �) �

E2(�;  1;  2; �)

E0(�;  1;  2; �)
:



Proof strategy

Random matrix theory for the random kernel inner product matrices

Z =
�
�(hwi;xji)

�
i2[N ];j2[n]

:

[El Karoui, 2010], [Cheng, Singer, 2013], [Do, Vu, 2013], [Fan, Montanari,
2019], [Hastie, Montanari, Rosset, Tibshirani, 2019].



Analytical prediction
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X Peak at the interpolation threshold.
X Monotone decreasing in the overparameterized regime.
X Global minimum when the number of parameters is infinity.



Insights
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I For any �, the min prediction error is achieved at N=n!1.
I For optimal �, the prediction error is monotonically decreasing.



Insights
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SNR = 5 SNR = 1=10

I High SNR: minimum at � = 0+;
I Low SNR: minimum at � > 0.



Summary of linearization of neural networks
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I # parameters 6= model complexity
that controls generalization.

I Double descent also exists in
linearized neural networks.

I Gap between NN and NT.
NT models cannot fully explain
the generalization efficacy of NN.
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Going beyond linearization?



Mean field theory

I SGD of two layers neural networks

θk+1
i = θki � "rθi`

�
yk;

1

N

NX
i=1

�?(xk;θ
k
i )
�
:

I Consider empirical distribution of weights

�̂N;k" =
1

N

NX
i=1

�θk
i

I Then �̂N;t ! �t as N !1 and "! 0, and �t satisfies

@t�t = r � (r	(θ; �t)�t):

I Difference from linearization theory: A different scaling limit.
[Mei, Montanari, Nguyen, 2018], [Rotskoff, Vanden-Eijnden, 2018]



Future directions

I Distribution of features x matter.

� Images $ Convolutional neural network.

� Graph $ Graph neural network.

� Exploring data and network invariance.

I Neural networks as function/distribution approximation?

� Generative modeling.

� Reinforcement learning.

I Uncertainty quantification in neural network systems.

� Robustness and adversarial examples.

� Approximate inference for Bayesian neural networks.

� Predictive inference.



Thanks!


