Generalization of linearized neural networks: staircase decay and double descent

Song Mei

UC Berkeley

July 23, 2020

Department of Mathematics, HKUST

Deep Learning Revolution

Deep Learning Revolution

"ACM named Yoshua Bengio, Geoffrey Hinton, and Yann LeCun recipients of the 2018 ACM A.M. Turing Award for conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing."

But theoretically?

But theoretically?

WHEN and WHY does deep learning work?

Call for Theoretical understandings

"Alchemy"

Call for Theoretical understandings

What don't we understand?

What don't we understand?

Empirical Surprises [Zhang, et.al, 2015]:

- ▶ Over-parameterization: # parameters \gg # training samples.
- ▶ Non-convexity.
- **Efficiently** fit all the training samples using SGD.
- Generalize well on test samples.

What don't we understand?

Empirical Surprises [Zhang, et.al, 2015]:

- ▶ Over-parameterization: # parameters \gg # training samples.
- ▶ Non-convexity.
- Efficiently fit all the training samples using SGD.
- Generalize well on test samples.

Mathematical Challenges		
Non-convexity	\leftrightarrow	Why efficient optimization?
Over-parameterization	\leftrightarrow	Why effective generalization?

A gentle introduction to

Linearization theory of neural networks

Linearized neural networks (neural tangent model)

Multi-layers neural network $f(x; \theta), x \in \mathbb{R}^d, \theta \in \mathbb{R}^N$

$$f(\boldsymbol{x};\boldsymbol{\theta}) = \boldsymbol{W}_{L}\sigma(\cdots \boldsymbol{W}_{2}\sigma(\boldsymbol{W}_{1}\boldsymbol{x})).$$

▶ Linearization around (random) parameter θ_0

 $f(\boldsymbol{x};\boldsymbol{\theta}) = f(\boldsymbol{x};\boldsymbol{\theta}_0) + \langle \boldsymbol{\theta} - \boldsymbol{\theta}_0, \nabla_{\boldsymbol{\theta}} f(\boldsymbol{x};\boldsymbol{\theta}_0) \rangle + o(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|_2)$

 \blacktriangleright Neural tangent model: the linear part of f

 $f_{\mathsf{NT}}(\boldsymbol{x};\boldsymbol{\beta},\boldsymbol{\theta}_0) = \langle \boldsymbol{\beta}, \nabla_{\boldsymbol{\theta}} f(\boldsymbol{x};\boldsymbol{\theta}_0) \rangle.$

[Jacot, Gabriel, Hongler, 2018] [Chizat, Bach, 2018b]

Linearized neural networks (neural tangent model)

▶ Multi-layers neural network $f(x; \theta)$, $x \in \mathbb{R}^d$, $\theta \in \mathbb{R}^N$

▶ Linearization around (random) parameter θ_0

 $f(\boldsymbol{x};\boldsymbol{\theta}) = f(\boldsymbol{x};\boldsymbol{\theta}_0) + \langle \boldsymbol{\theta} - \boldsymbol{\theta}_0, \nabla_{\boldsymbol{\theta}} f(\boldsymbol{x};\boldsymbol{\theta}_0) \rangle + o(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|_2).$

> Neural tangent model: the linear part of f

 $f_{\mathsf{NT}}(\boldsymbol{x};\boldsymbol{\beta},\boldsymbol{\theta}_0) = \langle \boldsymbol{\beta}, \nabla_{\boldsymbol{\theta}} f(\boldsymbol{x};\boldsymbol{\theta}_0) \rangle.$

[Jacot, Gabriel, Hongler, 2018] [Chizat, Bach, 2018b]

Linearized neural networks (neural tangent model)

▶ Multi-layers neural network $f(x; \theta), x \in \mathbb{R}^d, \theta \in \mathbb{R}^N$

▶ Linearization around (random) parameter θ_0

$$f(\boldsymbol{x};\boldsymbol{\theta}) = f(\boldsymbol{x};\boldsymbol{\theta}_0) + \langle \boldsymbol{\theta} - \boldsymbol{\theta}_0, \nabla_{\boldsymbol{\theta}} f(\boldsymbol{x};\boldsymbol{\theta}_0) \rangle + o(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|_2)$$

• Neural tangent model: the linear part of f

 $f_{\mathsf{NT}}(\boldsymbol{x};\boldsymbol{\beta},\boldsymbol{\theta}_0) = \langle \boldsymbol{\beta}, \nabla_{\boldsymbol{\theta}} f(\boldsymbol{x};\boldsymbol{\theta}_0) \rangle.$

[Jacot, Gabriel, Hongler, 2018] [Chizat, Bach, 2018b]

▶ NT model: the linear part of f

 $f_{\mathsf{NT}}(\boldsymbol{x};\boldsymbol{\beta},\boldsymbol{\theta}_0) = \langle \boldsymbol{\beta}, \boldsymbol{\phi}(\boldsymbol{x}) \rangle = \langle \boldsymbol{\beta},
abla_{\boldsymbol{\theta}} f(\boldsymbol{x};\boldsymbol{\theta}_0) \rangle.$

 $\blacktriangleright \ (\text{Random}) \ \text{feature map:} \ \phi(\cdot) = \nabla_{\theta} f(\cdot; \theta_0) : \mathbb{R}^d \to \mathbb{R}^N.$

▶ Training dataset: $(\mathcal{X}, \mathcal{Y}) = (x_i, y_i)_{i \in [n]}$.

► Gradient flow dynamics:

$$rac{\mathrm{d}}{\mathrm{d}t}oldsymbol{eta}^t = -
abla_{eta} \hat{\mathbb{E}}[(y - f_{\mathsf{NT}}(oldsymbol{x};oldsymbol{eta}^t,oldsymbol{ heta}_0))^2], \qquad oldsymbol{eta}^0 = oldsymbol{0}.$$

▶ NT model: the linear part of f

$$f_{\mathsf{NT}}(oldsymbol{x};oldsymbol{eta},oldsymbol{ heta}_0)=\langleoldsymbol{eta},\phi(oldsymbol{x})
angle=\langleoldsymbol{eta},
abla_{oldsymbol{ heta}}f(oldsymbol{x};oldsymbol{ heta}_0)
angle.$$

▶ (Random) feature map: $\phi(\cdot) = \nabla_{\theta} f(\cdot; \theta_0) : \mathbb{R}^d \to \mathbb{R}^N$.

▶ Training dataset: $(X, Y) = (x_i, y_i)_{i \in [n]}$.

► Gradient flow dynamics:

$$rac{\mathrm{d}}{\mathrm{d}t}oldsymbol{eta}^t = -
abla_{oldsymbol{eta}} \hat{\mathbb{E}}[(y - f_{\mathsf{NT}}(oldsymbol{x};oldsymbol{eta}^t,oldsymbol{ heta}_0))^2], \qquad oldsymbol{eta}^0 = oldsymbol{0}.$$

▶ NT model: the linear part of f

$$f_{\mathsf{NT}}(oldsymbol{x};oldsymbol{eta},oldsymbol{ heta}_0)=\langleoldsymbol{eta},\phi(oldsymbol{x})
angle=\langleoldsymbol{eta},
abla_{oldsymbol{ heta}}f(oldsymbol{x};oldsymbol{ heta}_0)
angle.$$

▶ (Random) feature map: $\phi(\cdot) = \nabla_{\theta} f(\cdot; \theta_0) : \mathbb{R}^d \to \mathbb{R}^N$.

▶ Training dataset: $(X, Y) = (x_i, y_i)_{i \in [n]}$.

► Gradient flow dynamics:

$$rac{\mathrm{d}}{\mathrm{d}t}oldsymbol{eta}^t = -
abla_{oldsymbol{eta}} \hat{\mathbb{E}}[(y - f_{\mathsf{NT}}(oldsymbol{x};oldsymbol{eta}^t,oldsymbol{ heta}_0))^2], \qquad oldsymbol{eta}^\circ = oldsymbol{0}.$$

▶ NT model: the linear part of f

$$f_{\mathsf{NT}}(oldsymbol{x};oldsymbol{eta},oldsymbol{ heta}_0)=\langleoldsymbol{eta},\phi(oldsymbol{x})
angle=\langleoldsymbol{eta},
abla_{oldsymbol{ heta}}f(oldsymbol{x};oldsymbol{ heta}_0)
angle.$$

▶ (Random) feature map: $\phi(\cdot) = \nabla_{\theta} f(\cdot; \theta_0) : \mathbb{R}^d \to \mathbb{R}^N$.

• Training dataset:
$$(\mathcal{X}, \mathcal{Y}) = (x_i, y_i)_{i \in [n]}$$
.

Gradient flow dynamics:

$$rac{\mathrm{d}}{\mathrm{d}t}oldsymbol{eta}^t = -
abla_{oldsymbol{eta}}\hat{\mathbb{E}}[(y-f_{\mathsf{NT}}(oldsymbol{x};oldsymbol{eta}^t,oldsymbol{ heta}_0))^2], \qquad oldsymbol{eta}^0 = oldsymbol{0}.$$

▶ NT model: the linear part of f

$$f_{\mathsf{NT}}(oldsymbol{x};oldsymbol{eta},oldsymbol{ heta}_0)=\langleoldsymbol{eta},\phi(oldsymbol{x})
angle=\langleoldsymbol{eta},
abla_{oldsymbol{ heta}}f(oldsymbol{x};oldsymbol{ heta}_0)
angle.$$

▶ (Random) feature map: $\phi(\cdot) = \nabla_{\theta} f(\cdot; \theta_0) : \mathbb{R}^d \to \mathbb{R}^N$.

▶ Training dataset:
$$(X, Y) = (x_i, y_i)_{i \in [n]}$$
.

Gradient flow dynamics:

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\beta}^t = -\nabla_{\boldsymbol{\beta}} \hat{\mathbb{E}}[(y - f_{\mathsf{NT}}(\boldsymbol{x};\boldsymbol{\beta}^t,\boldsymbol{\theta}_0))^2], \qquad \boldsymbol{\beta}^0 = \boldsymbol{0}.$$

Neural network \approx Neural tangent

Theorem [Jacot, Gabriel, Hongler, 2018] (Informal)

Consider neural networks $f^N(x; \theta)$ with number of neurons N, and consider

$$egin{aligned} &rac{\mathrm{d}}{\mathrm{d}t}oldsymbol{ heta}^t = & -
abla_{oldsymbol{ heta}}\hat{\mathbb{E}}[(y-f^N(x;oldsymbol{ heta}^t))^2], & oldsymbol{ heta}^0 = oldsymbol{ heta}_0 \ &rac{\mathrm{d}}{\mathrm{d}t}oldsymbol{eta}^t = & -
abla_{oldsymbol{eta}}\hat{\mathbb{E}}[(y-f^N_{\mathsf{NT}}(x;oldsymbol{eta}^t,oldsymbol{ heta}_0))^2], & oldsymbol{eta}^0 = oldsymbol{0}. \end{aligned}$$

Under proper (random) initialization, we have a.s.

$$\lim_{N\to\infty}|f^N(\boldsymbol{x};\boldsymbol{\theta}^t)-f^N_{\mathsf{NT}}(\boldsymbol{x};\boldsymbol{\beta}^t)|=0.$$

Optimization success

Gradient flow of training loss of NN converges to global min with over-parameterization and proper initialization

[Jacot, Gabriel, Hongler, 2018], [Du, Zhai, Poczos, Singh, 2018], [Du, Lee, Li, Wang, Zhai, 2018], [Allen-Zhu, Li, Song 2018], [Zou, Cao, Zhou, Gu, 2018], [Oymak, Soltanolkotabi, 2018] [Chizat, Bach, 2018b],

Optimization success

Gradient flow of training loss of NN converges to global min with over-parameterization and proper initialization

[Jacot, Gabriel, Hongler, 2018], [Du, Zhai, Poczos, Singh, 2018], [Du, Lee, Li, Wang, Zhai, 2018], [Allen-Zhu, Li, Song 2018], [Zou, Cao, Zhou, Gu, 2018], [Oymak, Soltanolkotabi, 2018] [Chizat, Bach, 2018b],

Does linearization fully explain the success of neural networks?

Optimization success

Gradient flow of training loss of NN converges to global min with over-parameterization and proper initialization

[Jacot, Gabriel, Hongler, 2018], [Du, Zhai, Poczos, Singh, 2018], [Du, Lee, Li, Wang, Zhai, 2018], [Allen-Zhu, Li, Song 2018], [Zou, Cao, Zhou, Gu, 2018], [Oymak, Soltanolkotabi, 2018] [Chizat, Bach, 2018b],

Does linearization fully explain the success of neural networks?

Our answer is No

Generalization

Empirically, the generalization of NT models are not as good as NN

Table: Cifar10 experiments

Architecture	Classification error
CNN	4%-
(1) CNTK	23%
(2) CNTK	11%
(3) Compositioal Kernel	10%

(1) [Arora, Du, Hu, Li, Salakhutdinov, Wang, 2019],

- (2) [Li, Wang, Yu, Du, Hu, Salakhutdinov, Arora, 2019],
- (3) [Shankar, Fang, Guo, Fridovich-Keil, Schmidt, Ragan-Kelley, Recht, 2020].

Performance gap: NN versus NT

Two-layers neural network

$$f_N(oldsymbol{x};oldsymbol{\Theta}) = \sum_{i=1}^N oldsymbol{a}_i \sigma(\langle oldsymbol{w}_i,oldsymbol{x}
angle), \quad oldsymbol{\Theta} = (a_1,oldsymbol{w}_1,\ldots,a_N,oldsymbol{w}_N).$$

- Input vector $x \in \mathbb{R}^d$.
- ▶ Bottom layer weights $\boldsymbol{w}_i \in \mathbb{R}^d$, i = 1, 2, ..., N.
- ▶ Top layer weights $a_i \in \mathbb{R}$, i = 1, 2, ..., N.

Linearization around initialization

Linearization

$$f_N(\boldsymbol{x};\boldsymbol{\Theta}) = f_N(\boldsymbol{x};\boldsymbol{\Theta}^0) + \underbrace{\sum_{i=1}^N \Delta a_i \sigma(\langle \boldsymbol{w}_i^0, \boldsymbol{x} \rangle)}_{\text{Top layer linearization}} + \underbrace{\sum_{i=1}^N a_i^0 \sigma'(\langle \boldsymbol{w}_i^0, \boldsymbol{x} \rangle) \langle \Delta \boldsymbol{w}_i, \boldsymbol{x} \rangle}_{\text{Bottom layer linearization}} + o(\cdot).$$

Linearized neural network: $(\boldsymbol{w}_i \sim \text{Unif}(\mathbb{S}^{d-1}))$

$$\mathcal{F}_{\mathsf{RF},N}(\boldsymbol{W}) = \Big\{ f = \sum_{i=1}^{N} a_i \sigma(\langle \boldsymbol{w}_i, \boldsymbol{x} \rangle) : a_i \in \mathbb{R}, i \in [N] \Big\},$$
$$\mathcal{F}_{\mathsf{NT},N}(\boldsymbol{W}) = \Big\{ f = \sum_{i=1}^{N} \sigma'(\langle \boldsymbol{w}_i, \boldsymbol{x} \rangle) \langle \boldsymbol{b}_i, \boldsymbol{x} \rangle : \boldsymbol{b}_i \in \mathbb{R}^d, i \in [N] \Big\}.$$

Blue: random and fixed. Red: parameters to be optimized. [Rahimi, Recht, 2008] [Jacot, Gabriel, Hongler, 2018]

Approximation error

Data distribution:

$$oldsymbol{x} \sim \mathrm{Unif}(\mathbb{S}^{d-1}(\sqrt{d})), \quad f_{\star} \in L^2(\mathbb{S}^{d-1}(\sqrt{d})).$$

Minimum risk (approximation error):

$$R_{\mathsf{M},N}(f_{\star}) = \inf_{f \in \mathcal{F}_{\mathsf{M},N}(\boldsymbol{W})} \mathbb{E}_{\boldsymbol{x}}\Big[\Big(f_{\star}(\boldsymbol{x}) - f(\boldsymbol{x})\Big)^2\Big], \hspace{0.2cm} \mathsf{M} \in \{\mathsf{RF},\mathsf{NT}\}.$$

Staircase decay

Random features regression

$$egin{aligned} \mathcal{F}_{\mathsf{RF},oldsymbol{N}}(oldsymbol{W}) &= \Big\{f = \sum_{i=1}^{oldsymbol{N}} a_i \sigma(\langle oldsymbol{w}_i,oldsymbol{x}
angle) : a_i \in \mathbb{R}, i \in [oldsymbol{N}]\Big\}, \ oldsymbol{W} &= (oldsymbol{w}_i)_{i\in [oldsymbol{N}]} \sim_{i.i.d.} \mathrm{Unif}(\mathbb{S}^{d-1}). \end{aligned}$$

Theorem (Ghorbani, Mei, Misiakiewicz, Montanari, 2019) Assume $d^{\ell+\delta} \leq N \leq d^{\ell+1-\delta}$ and σ satisfies "generic condition", we have $\inf_{f \in \mathcal{F}_{\mathsf{RF},N}(W)} \mathbb{E}_{x}[(f_{\star}(x) - f(x))^{2}] = \|\mathsf{P}_{>\ell}f_{\star}\|_{L^{2}}^{2} + o_{d,\mathbb{P}}(\|f_{\star}\|_{L^{2}}^{2}).$

 $\mathsf{P}_{>\ell} \colon$ projection orthogonal to the space of degree- ℓ polynomials.

With d^{ℓ} parameters, RF only fit a degree- ℓ polynomial.

Random features regression

$$egin{aligned} \mathcal{F}_{\mathsf{RF},oldsymbol{N}}(oldsymbol{W}) &= \Big\{f = \sum_{i=1}^{oldsymbol{N}} a_i \sigma(\langle oldsymbol{w}_i,oldsymbol{x}
angle) : a_i \in \mathbb{R}, i \in [oldsymbol{N}]\Big\}, \ oldsymbol{W} &= (oldsymbol{w}_i)_{i\in [oldsymbol{N}]} \sim_{i.i.d.} \mathrm{Unif}(\mathbb{S}^{d-1}). \end{aligned}$$

Theorem (Ghorbani, Mei, Misiakiewicz, Montanari, 2019) Assume $d^{\ell+\delta} \leq N \leq d^{\ell+1-\delta}$ and σ satisfies "generic condition", we have $\inf_{f \in \mathcal{F}_{\mathsf{RF},N}(W)} \mathbb{E}_{x}[(f_{\star}(x) - f(x))^{2}] = \|\mathsf{P}_{>\ell}f_{\star}\|_{L^{2}}^{2} + o_{d,\mathbb{P}}(\|f_{\star}\|_{L^{2}}^{2}).$

 $\mathsf{P}_{>\ell} \colon$ projection orthogonal to the space of degree- ℓ polynomials.

With d^{ℓ} parameters, RF only fit a degree- ℓ polynomial.

Similar result for NT

$$egin{aligned} \mathcal{F}_{\mathsf{NT},oldsymbol{N}}(oldsymbol{W}) &= \Big\{f = \sum_{i=1}^{oldsymbol{N}} \sigma'(\langleoldsymbol{w}_i,oldsymbol{x}
angle) egin{aligned} oldsymbol{b}_i,oldsymbol{x}
angle &:oldsymbol{b}_i \in oldsymbol{N} \ oldsymbol{W} &= (oldsymbol{w}_i)_{i\in[oldsymbol{N}]} \sim_{i.i.d.} {
m Unif}(\mathbb{S}^{d-1}). \end{aligned}$$

Theorem (Ghorbani, Mei, Misiakiewicz, Montanari, 2019) Assume $d^{\ell+\delta} \leq N \leq d^{\ell+1-\delta}$ and σ satisfies "generic condition", we have $\inf_{f \in \mathcal{F}_{\mathsf{NT},N}(W)} \mathbb{E}_{\boldsymbol{x}}[(f_{\star}(\boldsymbol{x}) - f(\boldsymbol{x}))^2] = \|\mathsf{P}_{>\ell+1}f_{\star}\|_{L^2}^2 + o_{d,\mathbb{P}}(\|f_{\star}\|_{L^2}^2).$

 $\mathsf{P}_{>\ell+1}$: projection orthogonal to the space of degree-($\ell+1)$ polynomials.

With $d^{\ell+1}$ parameters, NT only fit a degree- $(\ell + 1)$ polynomial.

Similar result for NT

$$egin{aligned} \mathcal{F}_{\mathsf{NT},oldsymbol{N}}(oldsymbol{W}) &= \Big\{f = \sum_{i=1}^{oldsymbol{N}} \sigma'(\langleoldsymbol{w}_i,oldsymbol{x}
angle) egin{aligned} oldsymbol{b}_i,oldsymbol{x}
angle &:oldsymbol{b}_i \in oldsymbol{N} \ oldsymbol{W} &= (oldsymbol{w}_i)_{i\in[oldsymbol{N}]} \sim_{i.i.d.} {
m Unif}(\mathbb{S}^{d-1}). \end{aligned}$$

Theorem (Ghorbani, Mei, Misiakiewicz, Montanari, 2019) Assume $d^{\ell+\delta} \leq N \leq d^{\ell+1-\delta}$ and σ satisfies "generic condition", we have $\inf_{f \in \mathcal{F}_{\mathsf{NT},N}(W)} \mathbb{E}_{\boldsymbol{x}}[(f_{\star}(\boldsymbol{x}) - f(\boldsymbol{x}))^2] = \|\mathsf{P}_{>\ell+1}f_{\star}\|_{L^2}^2 + o_{d,\mathbb{P}}(\|f_{\star}\|_{L^2}^2).$

 $\mathsf{P}_{>\ell+1}$: projection orthogonal to the space of degree-($\ell+1)$ polynomials.

With $d^{\ell+1}$ parameters, NT only fit a degree- $(\ell + 1)$ polynomial.

The staircase decay (a cartoon)

$$f = \mathsf{P}_0 f + \mathsf{P}_1 f + \mathsf{P}_2 f + \mathsf{P}_3 f + \cdots$$

Approximation gap

$$ext{Function } f: \mathbb{S}^{d-1} o \mathbb{R}, \, f(x) = Q_k(x_1). \ Q_k: ext{ degree } k ext{ polynomial.}$$

$$\blacktriangleright \text{ NT: } N = \Theta_d(d^{k-1});$$

- ► NN: $N = \Theta_d(1)$.
- ► A separation of approximation power.
- ▶ Neural network can potentially learn features adaptively.

Related work

Approximation error of two-layers NN and RF:

[Barron, 1993], [Mhaskar, 1996], [Maiorov, 1999], [Caponnetto, de Vito, 2007], [Rahimi, Recht, 2009], [Bach, 2017], [E, Ma, Wu, 2018] ...

Approx bound	f_{\star} bounded norm	$f_\star \in L^2(\mathbb{R}^d) \cap (d_\star ext{-sparse})$
RF	$\ f_{\star}\ _{\mathcal{H}}^2/{N \over \mathcal{N}}$	$\Theta_N(1/N^{1/d})$
NN	$\ f_\star\ _\mathcal{B}^2/N$	$\Theta_{\pmb{N}}(1/\pmb{N}^{1/d_{\star}})$
Related work

Approximation error of two-layers NN and RF:

[Barron, 1993], [Mhaskar, 1996], [Maiorov, 1999], [Caponnetto, de Vito, 2007], [Rahimi, Recht, 2009], [Bach, 2017], [E, Ma, Wu, 2018] ...

Approx bound	f_{\star} bounded norm	$f_\star \in L^2(\mathbb{R}^d) \cap (d_\star ext{-sparse})$
RF	$\ f_{\star}\ _{\mathcal{H}}^2/{N \over N}$	$\Theta_N(1/N^{1/d})$
NN	$\ f_\star\ _\mathcal{B}^2/N$	$\Theta_{\pmb{N}}(1/\pmb{N}^{1/d_{\star}})$

Difference between:

- New results
- $N = d^k$ as $d \to \infty$.

- V.S. Classical results
- v.s. fixed d as $N \to \infty$,
- Constant asymptotic error, v.s. Vanishing upper bound.

Related work

Approximation error of two-layers NN and RF:

[Barron, 1993], [Mhaskar, 1996], [Maiorov, 1999], [Caponnetto, de Vito, 2007], [Rahimi, Recht, 2009], [Bach, 2017], [E, Ma, Wu, 2018] ...

Approx bound	f_{\star} bounded norm	$f_\star \in L^2(\mathbb{R}^d) \cap (d_\star ext{-sparse})$
RF	$\ f_{\star}\ _{\mathcal{H}}^2/{N \over \mathcal{N}}$	$\Theta_N(1/N^{1/d})$
NN	$\ f_\star\ _\mathcal{B}^2/N$	$\Theta_{\pmb{N}}(1/\pmb{N}^{1/d_{\star}})$

$$N = d^k$$
 as $d \to \infty$, v.s. fixed d as $N \to \infty$,

Which asymptotics makes more sense?

$$d = 100,$$
 $N = 10,000,000.$
 $N = d^{3.5},$ $1/N^{1/d} = 0.85.$

Related work

Approximation error of two-layers NN and RF:

[Barron, 1993], [Mhaskar, 1996], [Maiorov, 1999], [Caponnetto, de Vito, 2007], [Rahimi, Recht, 2009], [Bach, 2017], [E, Ma, Wu, 2018] ...

Approx bound	f_{\star} bounded norm	$f_\star \in L^2(\mathbb{R}^d) \cap (d_\star ext{-sparse})$
RF	$\ f_{\star}\ _{\mathcal{H}}^2/{N \over \mathcal{N}}$	$\Theta_N(1/N^{1/d})$
NN	$\ f_\star\ _\mathcal{B}^2/N$	$\Theta_{\pmb{N}}(1/\pmb{N}^{1/d_{\star}})$

$$N = d^k$$
 as $d \to \infty$, v.s. fixed d as $N \to \infty$,

Which asymptotics makes more sense?

$$d_{\star} = 10,$$
 $N = 10,000,000.$
 $N = d_{\star}^{7},$ $1/N^{1/d_{\star}} = 0.20.$

Double descent

i

The motivating experiment

- ▶ MNIST: $(x_i, y_i) \in \mathbb{R}^{784} \times [10], i \in [50, 000].$
- ▶ Two-layers neural networks f_N :

$$f_N(\boldsymbol{x}; \boldsymbol{\theta}) = \sum_{j=1}^N \boldsymbol{a}_j \sigma(\langle \boldsymbol{w}_j, \boldsymbol{x} \rangle).$$

- ► Square loss without regularization.
- Find a local minimizer, report training and test error.
- ▶ Perform a sequence of experiments for different N.
- ▶ Plot training and test error vs N.

The motivating experiment

- ▶ MNIST: $(x_i, y_i) \in \mathbb{R}^{784} \times [10], i \in [50, 000].$
- ▶ Two-layers neural networks f_N :

$$f_N(\boldsymbol{x}; \boldsymbol{\theta}) = \sum_{j=1}^N \boldsymbol{a}_j \sigma(\langle \boldsymbol{w}_j, \boldsymbol{x} \rangle).$$

- ► Square loss without regularization.
- Find a local minimizer, report training and test error.
- > Perform a sequence of experiments for different N.
- ▶ Plot training and test error vs N.

Increasing # parameters

Figure: Experiments on MNIST. [Belkin, Hsu, Ma, Mandal, 2018].

Increasing # parameters

Figure: Experiments on MNIST. Left: [Belkin, Hsu, Ma, Mandal, 2018]. Right: [Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart, 2018].

Similar phenomenon appeared in the literature [LeCun, Kanter, and Solla, 1991], [Krogh and Hertz, 1992], [Opper and Kinzel, 1995], [Neyshabur, Tomioka, Srebro, 2014], [Advani and Saxe, 2017].

U-shaped curve

(a) U-shaped "bias-variance" risk curve

[Belkin, Hsu, Ma, Mandal, 2018]

Double descent

Figure: A cartoon by [Belkin, Hsu, Ma, Mandal, 2018].

- \checkmark Peak at the interpolation threshold.
- $\checkmark\,$ Monotone decreasing in the overparameterized regime.
- $\checkmark\,$ Global minimum when the number of parameters is infinity.

Complementary instead of contradictory

U-shaped curve

Test error vs model complexity that tightly controls generalization.

Examples: ℓ_2 norm in linear model, "k" in k nearest-neighbors.

Double-descent

Test error vs number of parameters.

Examples: # parameters in NN.

In NN, # parameters \neq model complexity that tightly controls generalization.

[Bartlett, 1997], [Bartlett and Mendelson, 2002]

Complementary instead of contradictory

U-shaped curve

Test error vs model complexity that tightly controls generalization.

Examples: ℓ_2 norm in linear model, "k" in k nearest-neighbors.

Double-descent

Test error vs number of parameters.

Examples: # parameters in NN.

In NN, # parameters \neq model complexity that tightly controls generalization.

[Bartlett, 1997], [Bartlett and Mendelson, 2002]

Linear model with random covariates

By [Hastie, Montanari, Rosset, Tibshirani, 2019]. See also [Belkin, Hsu, Xu, 2019].

Under-parameterized: β̂ = arg min_β ∑_i(y_i - ⟨x_i, β⟩)².
Over-parameterized: β̂ = arg min_β ||β||₂, s.t. y_i = ⟨x_i, β⟩ + ε_i, i ∈ [n].

- ▶ Model: $x_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d), \ y_i = \langle \mathbf{0}, x_i \rangle + \varepsilon_i \sim \mathcal{N}(\mathbf{0}, \mathbf{1}), \ i \in [n].$
- $\blacktriangleright \text{ Test risk } \propto \mathbb{E}[\|\hat{\boldsymbol{\beta}} \boldsymbol{0}\|_2^2] \propto \mathbb{E}[\|\boldsymbol{X}^\dagger \boldsymbol{y}\|_2^2] \propto \mathbb{E}[\mathrm{tr}((\boldsymbol{X}^\top \boldsymbol{X})^\dagger)], \text{ where } \boldsymbol{X} \in \mathbb{R}^{n \times d}.$
- When $n \neq d$, X is well conditioned.
- When $n \approx d$, X is infinitely ill conditioned.
- The model has marginally enough parameters to interpolate all the data, hence it interpolates in an awkward way.
- To fit the noise, the coefficients $\|\hat{\boldsymbol{\beta}}\|_2^2 = \|\boldsymbol{X}^{\dagger}\boldsymbol{y}\|_2^2$ blows up.

- $\blacktriangleright \text{ Model: } \boldsymbol{x}_i \sim \mathcal{N}(\boldsymbol{0}, \mathbf{I}_d), \, \boldsymbol{y}_i = \langle 0, \boldsymbol{x}_i \rangle + \varepsilon_i \sim \mathcal{N}(0, 1), \, i \in [n].$
- ▶ Test risk $\propto \mathbb{E}[\|\hat{\boldsymbol{\beta}} \mathbf{0}\|_2^2] \propto \mathbb{E}[\|\boldsymbol{X}^{\dagger}\boldsymbol{y}\|_2^2] \propto \mathbb{E}[\operatorname{tr}((\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger})],$ where $\boldsymbol{X} \in \mathbb{R}^{n \times d}$.
- When $n \neq d$, X is well conditioned.
- When $n \approx d$, \boldsymbol{X} is infinitely ill conditioned.
- The model has marginally enough parameters to interpolate all the data, hence it interpolates in an awkward way.
- To fit the noise, the coefficients $\|\hat{\boldsymbol{\beta}}\|_2^2 = \|\boldsymbol{X}^{\dagger}\boldsymbol{y}\|_2^2$ blows up.

- $\blacktriangleright \text{ Model: } \boldsymbol{x}_i \sim \mathcal{N}(\boldsymbol{0}, \mathbf{I}_d), \, \boldsymbol{y}_i = \langle 0, \boldsymbol{x}_i \rangle + \varepsilon_i \sim \mathcal{N}(0, 1), \, i \in [n].$
- ▶ Test risk $\propto \mathbb{E}[\|\hat{\boldsymbol{\beta}} \mathbf{0}\|_2^2] \propto \mathbb{E}[\|\boldsymbol{X}^{\dagger}\boldsymbol{y}\|_2^2] \propto \mathbb{E}[\operatorname{tr}((\boldsymbol{X}^{\top}\boldsymbol{X})^{\dagger})],$ where $\boldsymbol{X} \in \mathbb{R}^{n \times d}$.
- When $n \neq d$, X is well conditioned.
- When $n \approx d$, X is infinitely ill conditioned.

The model has marginally enough parameters to interpolate all the data, hence it interpolates in an awkward way.

• To fit the noise, the coefficients $\|\hat{\boldsymbol{\beta}}\|_2^2 = \|\boldsymbol{X}^{\dagger}\boldsymbol{y}\|_2^2$ blows up.

- $\blacktriangleright \text{ Model: } x_i \sim \mathcal{N}(\mathbf{0},\mathbf{I}_d), \, y_i = \langle 0,x_i \rangle + \varepsilon_i \sim \mathcal{N}(0,1), \, i \in [n].$
- ▶ Test risk $\propto \mathbb{E}[\|\hat{\beta} \mathbf{0}\|_2^2] \propto \mathbb{E}[\|X^{\dagger}y\|_2^2] \propto \mathbb{E}[\operatorname{tr}((X^{\top}X)^{\dagger})],$ where $X \in \mathbb{R}^{n \times d}$.
- When $n \neq d$, X is well conditioned.
- When $n \approx d$, X is infinitely ill conditioned.

• The model has marginally enough parameters to interpolate all the data, hence it interpolates in an awkward way.

• To fit the noise, the coefficients $\|\hat{\boldsymbol{\beta}}\|_2^2 = \|\boldsymbol{X}^{\dagger}\boldsymbol{y}\|_2^2$ blows up.

- $\blacktriangleright \text{ Model: } \boldsymbol{x}_i \sim \mathcal{N}(\boldsymbol{0}, \mathbf{I}_d), \, \boldsymbol{y}_i = \langle 0, \boldsymbol{x}_i \rangle + \varepsilon_i \sim \mathcal{N}(0, 1), \, i \in [n].$
- ▶ Test risk $\propto \mathbb{E}[\|\hat{\beta} \mathbf{0}\|_2^2] \propto \mathbb{E}[\|X^{\dagger}y\|_2^2] \propto \mathbb{E}[\operatorname{tr}((X^{\top}X)^{\dagger})],$ where $X \in \mathbb{R}^{n \times d}$.
- When $n \neq d$, X is well conditioned.
- When $n \approx d$, X is infinitely ill conditioned.

The model has marginally enough parameters to interpolate all the data, hence it interpolates in an awkward way.

• To fit the noise, the coefficients $\|\hat{\beta}\|_2^2 = \|X^{\dagger}y\|_2^2$ blows up.

- $\blacktriangleright \text{ Model: } x_i \sim \mathcal{N}(0, \mathbf{I}_d), \, y_i = \langle 0, x_i \rangle + \varepsilon_i \sim \mathcal{N}(0, 1), \, i \in [n].$
- ▶ Test risk $\propto \mathbb{E}[\|\hat{\beta} \mathbf{0}\|_2^2] \propto \mathbb{E}[\|X^{\dagger}y\|_2^2] \propto \mathbb{E}[\operatorname{tr}((X^{\top}X)^{\dagger})],$ where $X \in \mathbb{R}^{n \times d}$.
- When $n \neq d$, X is well conditioned.
- When $n \approx d$, X is infinitely ill conditioned.
- The model has marginally enough parameters to interpolate all the data, hence it interpolates in an awkward way.
- To fit the noise, the coefficients $\|\hat{\beta}\|_2^2 = \|X^{\dagger}y\|_2^2$ blows up.

Comparison

 \checkmark Peak at the interpolation threshold.

- ? Monotone decreasing in the overparameterized regime.
- ? Global minimum when the number of parameters is infinity.

Goal: find a tractable model that exhibits all the features of the double descent curve.

Figure: By [Belkin, Hsu, Ma, Mandal, 2018].

A simple model

The random features model

$$f_{\mathsf{RF}}({m x};{m a}) = \sum_{j=1}^N {m a}_j \sigma(\langle {m w}_j,{m x}
angle).$$

Random weights $(w_j)_{j \in [N]}$

 $w_j \sim_{iid} \text{Unif}(\mathbb{S}^{d-1}).$

A simple model

The random features model

$$f_{\mathsf{RF}}({m x};{m a}) = \sum_{j=1}^N {m a}_j \sigma(\langle {m w}_j,{m x}
angle).$$

Random weights $(w_j)_{j \in [N]}$

 $w_j \sim_{iid} \text{Unif}(\mathbb{S}^{d-1}).$

Data $(x_i, y_i)_{i \in [n]}$

$$oldsymbol{x}_i \sim {
m Unif}(\mathbb{S}^{d-1}(\sqrt{d})), \qquad y_i = f_\star(oldsymbol{x}_i) + arepsilon_i.$$

A simple model

Random features regression: $\hat{a}_{\lambda} = \arg \min_{a} L_{\lambda}(a)$,

$$L_{\lambda}(\boldsymbol{a}) = \frac{1}{n} \sum_{i=1}^{n} \left[\left(y_i - \sum_{j=1}^{N} a_j \sigma(\langle \boldsymbol{x}_i, \boldsymbol{w}_j \rangle) \right)^2 \right] + \frac{\lambda N}{d} \|\boldsymbol{a}\|_2^2, \quad (\text{Train})$$
$$R(\boldsymbol{a}; f_{\star}) = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y}} \left[\left(f_{\star}(\boldsymbol{x}) - \sum_{j=1}^{N} a_j \sigma(\langle \boldsymbol{x}, \boldsymbol{w}_j \rangle) \right)^2 \right]. \quad (\text{Test})$$

Assumptions

a data, **N** features, d dimension. $N/d \rightarrow \psi_1$, $n/d \rightarrow \psi_2$, as $d \rightarrow \infty$.

Tech. ass. on f_{\star} and σ (apply to almost every f_{\star} and σ).

Precise asymptotics

Theorem (Mei and Montanari, 2019)

Under above assumptions, the test error of RF model is given by

 $R(\hat{\boldsymbol{a}}_{\lambda};f_{\star}) = \|\beta\|_2^2 \cdot \mathscr{B}(\zeta,\psi_1,\psi_2,\lambda/\mu_{\star}^2) + \tau^2 \cdot \mathscr{V}(\zeta,\psi_1,\psi_2,\lambda/\mu_{\star}^2) + o_{d,\mathbb{P}}(1),$

where functions \mathscr{B} and \mathscr{V} are given explicitly below.

Explicit formulae

Let the functions $u_1,
u_2: \mathbb{C}_+ \to \mathbb{C}_+$ be the unique solution of

$$\begin{split} \nu_1 &= \psi_1 \left(-\xi - \nu_2 - \frac{\zeta^2 \nu_2}{1 - \zeta^2 \nu_1 \nu_2} \right)^{-1}, \\ \nu_2 &= \psi_2 \left(-\xi - \nu_1 - \frac{\zeta^2 \nu_1}{1 - \zeta^2 \nu_1 \nu_2} \right)^{-1}; \end{split}$$

Let

$$\chi\equiv
u_1(i(\psi_1\psi_2\overline{\lambda})^{1/2})\cdot
u_2(i(\psi_1\psi_2\overline{\lambda})^{1/2}),$$

and

$$\begin{split} \mathscr{E}_{0}\left(\zeta,\psi_{1},\psi_{2},\overline{\lambda}\right) &\equiv -\chi^{5}\zeta^{6} + 3\chi^{4}\zeta^{4} + (\psi_{1}\psi_{2} - \psi_{2} - \psi_{1} + 1)\chi^{3}\zeta^{6} - 2\chi^{3}\zeta^{4} - 3\chi^{3}\zeta^{2} \\ &+ (\psi_{1} + \psi_{2} - 3\psi_{1}\psi_{2} + 1)\chi^{2}\zeta^{4} + 2\chi^{2}\zeta^{2} + \chi^{2} + 3\psi_{1}\psi_{2}\chi\zeta^{2} - \psi_{1}\psi_{2} , \\ \mathscr{E}_{1}\left(\zeta,\psi_{1},\psi_{2},\overline{\lambda}\right) &\equiv \psi_{2}\chi^{3}\zeta^{4} - \psi_{2}\chi^{2}\zeta^{2} + \psi_{1}\psi_{2}\chi\zeta^{2} - \psi_{1}\psi_{2} , \\ \mathscr{E}_{2}\left(\zeta,\psi_{1},\psi_{2},\overline{\lambda}\right) &\equiv \chi^{5}\zeta^{6} - 3\chi^{4}\zeta^{4} + (\psi_{1} - 1)\chi^{3}\zeta^{6} + 2\chi^{3}\zeta^{4} + 3\chi^{3}\zeta^{2} + (-\psi_{1} - 1)\chi^{2}\zeta^{4} - 2\chi^{2}\zeta^{2} - \chi^{2} . \end{split}$$

We then have

$$\mathscr{B}(\zeta,\psi_1,\psi_2,\overline{\lambda}) \equiv \frac{\mathscr{E}_1(\zeta,\psi_1,\psi_2,\overline{\lambda})}{\mathscr{E}_0(\zeta,\psi_1,\psi_2,\overline{\lambda})}, \qquad \mathscr{V}(\zeta,\psi_1,\psi_2,\overline{\lambda}) \equiv \frac{\mathscr{E}_2(\zeta,\psi_1,\psi_2,\overline{\lambda})}{\mathscr{E}_0(\zeta,\psi_1,\psi_2,\overline{\lambda})}.$$

Random matrix theory for the random kernel inner product matrices

$$oldsymbol{Z} = \left(\sigma(\langle oldsymbol{w}_i, oldsymbol{x}_j
angle)
ight)_{i \in [oldsymbol{N}], j \in [oldsymbol{n}]}$$

[El Karoui, 2010], [Cheng, Singer, 2013], [Do, Vu, 2013], [Fan, Montanari, 2019], [Hastie, Montanari, Rosset, Tibshirani, 2019].

Analytical prediction

- \checkmark Peak at the interpolation threshold.
- \checkmark Monotone decreasing in the overparameterized regime.
- \checkmark Global minimum when the number of parameters is infinity.

Insights

For any λ, the min prediction error is achieved at N/n → ∞.
 For optimal λ, the prediction error is monotonically decreasing.

Insights

- High SNR: minimum at $\lambda = 0+$;
- Low SNR: minimum at $\lambda > 0$.

Summary of linearization of neural networks

- # parameters ≠ model complexity that controls generalization.
- Double descent also exists in linearized neural networks.

Summary of linearization of neural networks

- # parameters ≠ model complexity that controls generalization.
- Double descent also exists in linearized neural networks.

 Gap between NN and NT.
 NT models cannot fully explain the generalization efficacy of NN.

Going beyond linearization?

Mean field theory

SGD of two layers neural networks

$$oldsymbol{ heta}_i^{k+1} = oldsymbol{ heta}_i^k - arepsilon
abla_{oldsymbol{ heta}}^k oldsymbol{\ell}\Big(y_k, rac{1}{N}\sum_{i=1}^N \sigma_\star(oldsymbol{x}_k, oldsymbol{ heta}_i^k)\Big).$$

Consider empirical distribution of weights

$$\hat{
ho}_{N,karepsilon} = rac{1}{N}\sum_{i=1}^N \delta_{oldsymbol{ heta}_i^k}$$

▶ Then $\hat{\rho}_{N,t} \rightarrow \rho_t$ as $N \rightarrow \infty$ and $\varepsilon \rightarrow 0$, and ρ_t satisfies

$$\partial_t \rho_t =
abla \cdot (
abla \Psi(oldsymbol{ heta};
ho_t)
ho_t).$$

Difference from linearization theory: A different scaling limit.
 [Mei, Montanari, Nguyen, 2018], [Rotskoff, Vanden-Eijnden, 2018]

Future directions

- Distribution of features x matter.
 - Images \leftrightarrow Convolutional neural network.
 - $\blacksquare \ Graph \leftrightarrow Graph neural network.$
 - Exploring data and network invariance.
- Neural networks as function/distribution approximation?
 - Generative modeling.
 - Reinforcement learning.
- Uncertainty quantification in neural network systems.
 - Robustness and adversarial examples.
 - Approximate inference for Bayesian neural networks.
 - Predictive inference.

Thanks!

1