MATH6380O Mini-Project 1
Image Classification with Extracted Feature

ZHANG Jianhui, ZHANG Hongming, ZHU Weizhi, FAN Min

Hong Kong University of Science and Technology

March 13, 2018
Outline

1. Preprocessing data

2. Feature Extraction
 - Scattering Net
 - ResNet-50

3. Classification

4. Discussion
Outline

1. Preprocessing data
2. Feature Extraction
 - Scattering Net
 - ResNet-50
3. Classification
4. Discussion
More Samples from Limited Paintings

Original data: 28 paintings totally, 12 genuine, 9 fake, 7 unknown. Crop more samples from one single painting, that is, we crop 200 samples with 224*224 size.

Random cropping does not work well.

Figure: Painting No.9
We randomly crop 5000 samples from each paintings and compute their variance, whereby we get empirical distribution of variances. Small variance may represent empty sample. We could set a proper threshold to distinguish meaningful samples from empty ones.
Variance Threshold

First, for every painting we set 90th percentile as variance threshold to select samples cropped randomly. But it does not work well. Then we pre-crop paintings with edges like No. 18 and then crop them randomly with variance threshold.

Figure: Samples from No. 18

Figure: Samples from pre-cropped No. 18

Figure: Painting No. 18
Choose a Proper Variance Threshold

If we choose large variance threshold, we could only crop samples from small area. How to choose a proper variance threshold? In project, we simply choose 45th percentile as variance threshold.

Figure: Samples with 45th percentile from No. 18
Outline

1. Preprocessing data
2. Feature Extraction
 - Scattering Net
 - ResNet-50
3. Classification
4. Discussion
Parameters of Scattering Net

We use the package ScatNet 2.0 from ENS.

Parameter setting

- `filt_opt.J = 5`, the number of scale of wavelets (high pass filters)
- `filt_opt.L = 6`, the number of orientations
- `scat_opt.M = 3`, the maximum scattering order (layers of scatter net)

Samples are RGB small images. We implement scattering net on each channel and then concatenate transformed feature together as a single vector.
RestNet 50

- We use a pre-trained ResNet-50 model on Image Net trained by Tensor flow.
- Data pre-processing.
- Remove last layer and use the output as feature.
Outline

1. Preprocessing data

2. Feature Extraction
 - Scattering Net
 - ResNet-50

3. Classification

4. Discussion
Classification Methods

Use features extracted by CNN and Scatter Network

- Linear Regression
- SVM
- KNN

Fine tune ResNet 50
Results on extracted features

Leave one out scheme for testing

<table>
<thead>
<tr>
<th>Features</th>
<th>Classifier</th>
<th>Acc on sample</th>
<th>Acc on painting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet50</td>
<td>SVM</td>
<td>66.7%</td>
<td>65.8%</td>
</tr>
<tr>
<td></td>
<td>KNN</td>
<td>71.4%</td>
<td>65.1%</td>
</tr>
<tr>
<td></td>
<td>Logistic Regression</td>
<td>81.0%</td>
<td>71.4%</td>
</tr>
<tr>
<td>Scatter Network</td>
<td>SVM</td>
<td>77.3%</td>
<td>80.9%</td>
</tr>
</tbody>
</table>
Data splitting for ResNet 50

- Pre-select samples of 7 paintings as test set.
- Pre-select 20% in training set as validation set
 - One concern is that features of samples from the same painting are similar.
- Trained on a 1080ti GPU.
Classification Results

- Accuracy on samples: 84.28%
- Accuracy on paintings: 85.71% (6/7)
- Voting result:

<table>
<thead>
<tr>
<th>Painting</th>
<th>#1 Not</th>
<th>#2 Not</th>
<th>#3 Yes</th>
<th>#4 Yes</th>
<th>#5 Yes</th>
<th>#6 Yes</th>
<th>#7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voting Acc</td>
<td>199/200</td>
<td>200/200</td>
<td>200/200</td>
<td>200/200</td>
<td>181/200</td>
<td>0/200</td>
<td>200/200</td>
</tr>
</tbody>
</table>
Outline

1 Preprocessing data

2 Feature Extraction
 • Scattering Net
 • ResNet-50

3 Classification

4 Discussion
During the first epoch, the training accuracy is about 100%.
Re-choose training and validation set

- The validation set are all non-Raphael paintings while the training set is consist of mostly Raphael paintings.
- Split the data again, and use most of the non-Raphael paintings as training data.
Result

- Accuracy on samples: 31.9%.
- Accuracy on paintings: 28.6%.
- Voting result:

<table>
<thead>
<tr>
<th>Painting</th>
<th>#1 Not</th>
<th>#2 Not</th>
<th>#3 Yes</th>
<th>#4 Yes</th>
<th>#5 Yes</th>
<th>#6 Yes</th>
<th>#7 Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voting Acc</td>
<td>200/200</td>
<td>200/200</td>
<td>0/200</td>
<td>1/200</td>
<td>0/200</td>
<td>0/200</td>
<td>46/200</td>
</tr>
</tbody>
</table>
Conclusion

- The dominant factor is which painting the sample belongs to.
- The network draw a boundary for Rapheals paintings out, and hopefully they are close to each others. So we have many true positive cases.
- But the boundary is not accurate, so it leads to many false negative cases.
Thank you for listening!

Q&A